Cooperative Lakes Monitoring Program

Michigan's Citizen Volunteer Partnership for Lakes

"MI Lakes – Ours to Protect"

Annual Summary Report 2010

Michigan's Citizen Volunteers
Michigan Lake & Stream Associations, Inc.
Michigan Department of Natural Resources & Environment
Michigan State University Department of Fisheries and Wildlife
Great Lakes Commission
Huron River Watershed Council

Michigan Clean Water Corps

Michigan's Lakes and the Tragedy of the Commons.

In 1968, Garrett Hardin published his classic environmental essay *The Tragedy of the Commons* in the journal *Science*. In it he succinctly depicted the degradation and exploitation of the environment to be expected whenever many share a common resource such as federal rangeland, state and national parks, the atmosphere, streams and lakes. Using a community pasture as an example, he explained how each herder added more and more animals to his herd until the pasture was destroyed by overgrazing. Each herder benefited monetarily by adding animals to his herd, but bore no responsibility for the pasture and its sustainability.

While Harding popularized the tragedy of the commons, others before him identified the characteristic fate of common property. In fact, two thousand years ago, Aristotle in his book *Politics* stated, "what is common to the greatest number has the least care bestowed upon it. Everyone thinks chiefly of his own, hardy at all of the common interest". Lakes and streams are clearly a common property shared by the riparian property owners and the community of citizens who use and enjoy the water, fish, wildlife and aesthetic appeal.

True to the tragedy of the commons, most lakes provide countless hours of recreational enjoyment for numerous users. Some receive waste discharges from municipal and industrial sources. Nearly all are impacted by urban and agricultural development and stormwater runoff, septic systems and lawn fertilizers, increasing weed growth, algae blooms and muck accumulation. Very few are managed to sustain their quality for future generations. With over 11,000 lakes in Michigan, limited state agency staff can provide only partial oversight and must concentrate on the most serious problems. Local governments, although possessing management tools like Lake Improvement Boards and Watershed Councils, address police and fire protection, schools, infrastructure development, and waste management as higher priorities. Riparian property owners who should be the leading advocates for lake protection and promoting collaborative management partnership are often more interested in recreational activities such as swimming, fishing and boating.

Unfortunately most lakes are fulfilling Hardin's principle of the tragedy of the commons. Only a few exceptional communities are proof that the principle is not an irrefutable law of human society. When communities accept ownership in their natural resources, lakes and streams can be high quality, sustainable commons. The more each lake owner and user invests in this responsibility, the more certain our children will be that they will "inherit our water resources in the same quality that the present generation borrowed it from them". Working together we can protect Michigan's lakes.

TABLE OF CONTENTS

Tragedy of Commons Inside Front Cover	Pilot Project 17
Data Corrections i	Data Use 18
Introduction 1	Conclusion
The Self-Help Legacy 2	References
CLMP and MiCorps 3	Iron County 19
Lake Quality 3	Acknowledgments 20
Classifying Lakes 4	Map of 2010 CLMP Lakes 23
Eutrophication 5	Appendices 24
Measuring Eutrophication 5	Secchi Disk Transparency Results Total Phosphorus Results
Lake Productivity Index (TSI) 7	Chlorophyll Results
Other Measures 9	Dissolved Oxygen Example Results
CLMP Project Results 11	Exotic Plant Watch Example Results

DATA CORRECTIONS FROM PREVIOUS REPORTS

There are no known errors to report.

If you believe that the tabulated data for your lake in this Report are in error please contact Bill Dimond, CLMP program coordinator by telephone at 517-241-9565 or email at dimondw@michigan.gov. It is important for the credibility of the CLMP that all data be accurately reported. When tabulation and reporting errors are found they need to be identified and a correction statement issued. We appreciate your support in the review of CLMP data and maintaining a high level of quality for the program.

INTRODUCTION

Michigan's unique geographical location provides its citizens with a wealth of freshwater resources including over 11,000 inland lakes. In addition to being valuable ecological resources, lakes provide aesthetic and recreational value for the people of Michigan and neighboring states. An ideal Michigan summer pastime is going to a cottage on an inland lake to fish, water-ski, swim, and relax.

As more and more people use the lakes and surrounding watersheds. the potential for pollution problems and use impairment increases dramatically. Although many Michigan's inland lakes have capacity to accommodate the burden of human activities in the short term, continuing stress on the lakes and lake watersheds over time will ultimately lead to adverse water quality and recreational impacts.

Reliable information including water quality data, levels of use, and use impairment are essential for determining the health of a lake and for developing a management plan to protect the lake. As the users and primary beneficiaries of Michigan's lake resources, citizens must take an active role in obtaining this information and managing their lakes.

To meet this need, the Department of Natural Resources & Environment (DNRE, formerly Department of Environmental Quality - DEQ), Michigan Lake & Stream Associations

Michigan's abundant water resources...

Michigan Lakes

Source: Michigan Department of Natural Resources & Environment

...include over 11,000 inland lakes.

(MLSA), the Great Lakes Commission and the Huron River Watershed Council have partnered to implement the Cooperative Lakes Monitoring Program (CLMP). The purpose of this effort is to help citizen volunteers monitor indicators of water quality in their lake and document changes in lake quality. The CLMP provides sampling methods. training. workshops, technical support, quality control, and laboratory assistance to the volunteer monitors. Michigan State University's Department of Fisheries and Wildlife supports the partnership with technical assistance.

THE SELF-HELP LEGACY

Originally known as the Self-Help Program, the CLMP continues a long tradition ofcitizen volunteer monitoring. Michigan has maintained a volunteer lake monitoring program since 1974, making it the second oldest volunteer monitoring program for lakes in the nation. The original program monitored water quality by measuring water clarity with a Secchi disk.

In 1992, the former Department of Natural Resources and MLSA entered into a cooperative agreement to expand the program. An advanced Self-Help program was initiated that included a monitoring component for the plant nutrient phosphorus. 1994. side-by-side a sampling component was added to the program to assure the quality of the data being collected.

The CLMP continues the "self-help" legacy by providing citizens opportunity to learn and participate in lake management. Currently, CLMP supports monitoring components for Secchi disk transparency, total phosphorus, chlorophyll dissolved α. oxygen/temperature aquatic and plants.

The CLMP is a cost-effective process for the DNRE to increase the baseline data available for Michigan's lakes as well as establish a continuous data record for determining water quality Therefore the DNRE/citizen trends. volunteer partnership is critical to lake management in Michigan.

CLMP Contacts

Michigan Lake and Stream Associations, Inc.

306 E. Main St. Stanton, MI 48888 989-831-5100 http://www.mlswa.org

Michigan Department of Natural Resources & Environment

P.O. Box 30273 Lansing, MI 48909-7773 Telephone: 517-335-4211 http://www.michigan.gov/dnre

Michigan Clean Water Corps c/o Great Lakes Commission 2805 South Industrial Hwy.

Suite 100

Ann Arbor, MI 48104-6791 Telephone: 734-971-9135

http://www.micorps.net

CLMP and MiCorps

The CLMP is also a principal program within the Michigan Clean Water Corps (MiCorps), network of volunteer monitoring programs Michigan. MiCorps was through executive order an Governor Jennifer Granholm to assist DEQ(currently DNRE) the collecting and sharing water quality data for use in management programs and to foster water resource stewardship. MiCorps provides volunteer monitoring programs with services including:

Training programs,
A web site-www.micorps.net,
A data exchange network,
A listserv,
An annual conference, and
A monitor's newsletter.

The mission of MiCorps is to network support and expand volunteer water quality monitoring organizations across the state. To learn more about MiCorps visit www.micorps.net.

LAKE QUALITY

A lake's condition is influenced by many factors, such as the amount of recreational use it receives, shoreline development, and water quality. Lake water quality is a general term covering many aspects of chemistry and biology. The health of a lake is determined by its water quality.

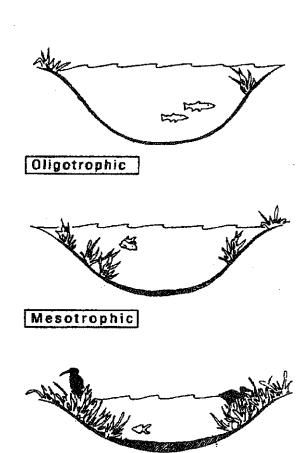
CLMP Goals

- Provide baseline information and document trends in water quality for individual lakes.
- Educate lake residents, users, and interested citizens in the collection of water quality data, lake ecology, and lake management practices.
- Build a constituency of citizens to practice sound lake management at the local level and to build public support for lake quality protection.
- Provide a cost-effective process for the DNRE to increase baseline data for lakes statewide.

CLMP Measurements

- Secchi disk transparency
- Spring total phosphorus
- Summer total phosphorus
- Chlorophyll *a*
- Dissolved oxygen and temperature
- Aquatic plant identification and mapping

Increasing lake productivity can impact water quality and result in problems such as excessive weed growth, algal blooms, and mucky bottom sediments. *Productivity* refers to the amount of plant and animal life that can be produced within the lake.


Plant *nutrients* are a major factor that cause increased productivity in lakes. In Michigan, *phosphorus* is the nutrient most responsible for increasing lake productivity.

The CLMP is designed to specifically monitor changes in lake productivity. The current program enlists citizen volunteers to monitor water clarity, the algal plant pigment chlorophyll α and dissolved oxygen throughout the summer months and total phosphorus during the spring and late summer. These parameters are indicators of primary (algal) productivity and, if measured over many years, may document changes in the lake.

CLASSIFYING LAKES

A lake's ability to support plant and animal life defines its level productivity, or trophic state. Lakes are commonly classified based on their productivity. Low productive oligotrophic lakes are generally deep and clear with little aquatic plant growth. These lakes maintain sufficient dissolved oxygen in the cool. deep-bottom waters during summer to support cold water fish. such as trout and whitefish. contrast, high productive eutrophic

lakes are generally shallow, turbid, and support abundant aquatic plant growth. In deep eutrophic lakes, the cool bottom waters usually contain little or no dissolved oxygen. Therefore. these lakes can only support warm water fish, such as bass Lakes that fall between and pike. these two classifications are called mesotrophic lakes. Lakes that exhibit extremely high productivity, such as nuisance algae and weed growth are called hypereutrophic lakes.

Possible trophic states of inland lakes. (Source: Hamlin Lake Improvement Board)

Eutrophic

EUTROPHICATION

 ${f T}$ he gradual increase of lake productivity from oligotrophy to eutrophy is called lake aging or eutrophication. Lake eutrophication is a natural process resulting from the gradual accumulation of nutrients, increased productivity, and a slow filling in of the lake basin with accumulated sediments. silt. muck. Human activities can greatly speed up this process by dramatically increasing nutrient, soil, or organic matter input to the lake. This human influenced, accelerated lake aging process known is as culturaleutrophication. A primary objective of most lake management plans is to slow down cultural eutrophication by reducing the input of nutrients and sediments to the lake from the surrounding land.

MEASURING EUTROPHICATION

Measuring a lake's water quality and eutrophication is not an easy task. Lakes are a complex ecosystem made up of physical, chemical, and biological components in a constant state of action and interaction.

As on land, plant growth in lakes is not constant throughout the summer. Some species mature early in the season, die back, and are replaced by other species in a regular succession.

While overall population levels often reach a maximum in mid-summer,

CLMP Volunteer Nancy Beckwith demonstrates the use of a Secchi disk, a simple tool for measuring water transparency. Diminished water transparency is a possible indicator of eutrophication. (MiCorps photo by Jo Latimore)

this pattern is influenced or altered by numerous factors, such as temperature, rainfall, and aquatic animals. For the same reasons lakes are different from week to week, lake water quality can fluctuate from year to year.

Given these factors, observers of lake water quality must train themselves to recognize the difference between short-term, normal fluctuations and long-term changes in lake productivity (e.g., eutrophication). Many years of reliable data collected on a consistent and regular basis are required to separate true long-term changes in lake productivity from seasonal and annual fluctuations.

Important Measures of Eutrophication

Nutrients are the leading cause of eutrophication. Nitrogen and phosphorus both stimulate plant growth. Both are measured from samples of water and reported in units of ug/l (micrograms per liter), or ppb (parts per billion). Phosphorus is the most important nutrient affecting lake productivity, and is often used directly as a measure of eutrophication.

Plants are the primary users of nutrients. Chlorophyll a is a component of the cells of most plants, and can be used to measure the concentration of small plants in the water, such as algae. Chlorophyll a is measured from samples of water and reported in units of ug/l. Macrophytes are aquatic plants with stems and leaves. The location of different species of plants can be mapped, and the density can be measured in pounds of plants per acre of lake.

Transparency, or the clarity of water, is measured using a device known as a Secchi disk. This is an eight inch diameter target painted black and white in alternate quadrants. The disk is attached to a marked line, or measuring tape, and lowered from a boat into the lake. The distance into the water column the disk can be seen is the transparency, measured in feet or meters. A short distance of visibility means that there are suspended particles or algae cells in the water, an indication of nutrient enrichment

Dissolved Oxygen (DO) which is oxygen dissolved in the water, is necessary to sustain fish populations. Fish, such as trout, require more DO than warm water species. Eutrophic lakes occasionally have levels of DO below the minimum for fish to survive, and fish kills can result.

Sediments can be measured to determine how fast material is depositing on the bottom. This may indicate watershed erosion, or a large die-off of aquatic plants.

Fish can be sampled using nets. In an oligotrophic lake there are likely to be cold water species, such as trout. Warm water fish, such as sunfish, bass, bullheads, and carp are more typical of a eutrophic lake.

Temperature affects the growth of plants, the release of nutrients, and the mixing of layers of water in the lake. Temperature measurements can determine if mixing occurs, moving nutrients from the lake bottom up into the surface waters promoting algae blooms.

LAKE PRODUCTIVITY INDEX (TSI)

The general lake classification scheme described on page four puts lakes into four categories depending on biological productivity level, or trophic state: oligotrophic, mesotrophic, eutrophic, hypereutrophic. While these categories are convenient, they are somewhat misleading because in reality, lake water quality is a continuum progressing from very good to very poor conditions. A more precise method of describing the productivity of a lake is to use a numerical index calculated directly from water quality data. The CLMP uses Carlson's (1977) Trophic State Index (TSI), to describe the productivity of the lakes enrolled in the program.

Carlson developed mathematical relationships for calculating the TSI from summer measurements of Secchi depth transparency, chlorophyll a, and total phosphorus in lakes. These parameters are good indirect measures of a lake's productivity, with chlorophyll a the most direct trophic state indicator. The TSI expresses lake productivity on a continuous numerical scale from 0 to 100, with increasing numbers indicating more eutrophic conditions. The zero point on the TSI scale was set to correlate with a Secchi transparency of 64 meters (210 feet).

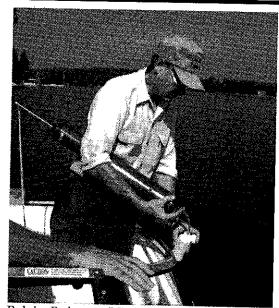
The computed TSI values for an individual lake can be used for comparison with other lakes, to evaluate changes within the lake over time, and to estimate other water

quality parameters within the lake. You can use the chart on the next page to convert measured parameter values to TSI values to determine the trophic status category. Please note that the dividing lines between the trophic status categories are somewhat arbitrary since lake water quality is a continuum and there is no broad agreement among lake scientists as to the precise point of change between each of these classifications.

Carlson's TSI Equations

 $TSI_{SD} = 60 - 33.2 \log_{10} SD$

 $TSI_{TP} = 4.2 + 33.2 \log_{10} TP$


 $TSI_{CHL} = 30.6 + 22.6 \log_{10} CHL$

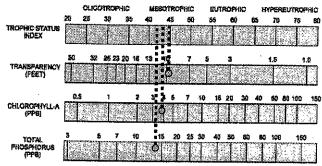
where,

SD = Secchi depth transparency (m)

TP = total phosphorus concentration (ug/l)

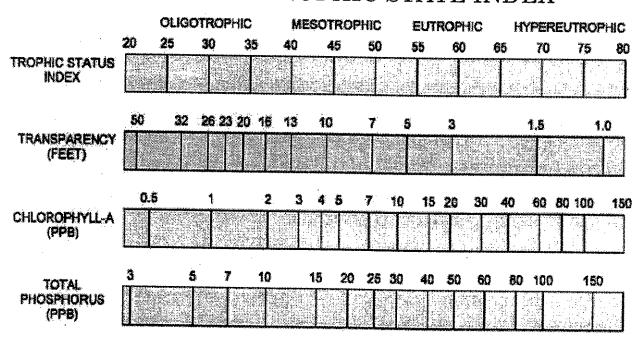
CHL = chlorophyll a concentration (ug/l)

Ralph Bednarz (Michigan DNRE) joins CLMP volunteers for side-by-side lake sampling, part of the quality assurance program for CLMP data (MiCorps photo by Jo Latimore).


Example of how to use the chart below:

A volunteer from Horsehead Lake, Mecosta County, measured Secchi disk transparency, chlorophyll a, and summer total phosphorus. After receiving the results, the volunteer plots each of the parameters on the graph below. The volunteer uses the mean value of the Secchi disk data, the median value of the chlorophyll a data, and the summer phosphorus value, all available in the CLMP Annual Report.

You may use the larger TSI chart below to record your lake's data and determine its Trophic Status Index category.


By drawing a straight line up from each of the points, the volunteer learns that the different TSI parameters for Horsehead Lake fall between 40 and 45, which places Horsehead Lake in the middle of the mesotrophic range. The lines from the different parameters do not exactly match up because of natural variability in the data.

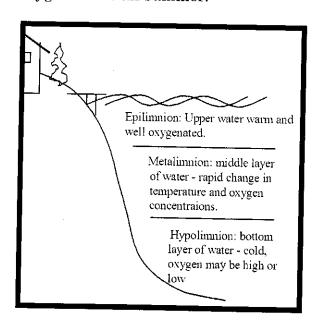
CARLSON'S TROPHIC STATE INDEX

Source: Minneaota Pollutian Cantral Agency

CARLSON'S TROPHIC STATE INDEX

Source: Minnesota Pollution Control Agency

OTHER MEASURES OF LAKE PRODUCTIVITY


Dissolved Oxygen (DO) and Temperature

Dissolved oxygen and temperature are two fundamental measurements of lake productivity. The amount of dissolved oxygen in the water is an important indicator of overall lake health.

For approximately two weeks in the spring and fall, the typical lake is entirely mixed from top to bottom during a process called "overturn", when all water in the lake is 4 degrees Celsius. In the winter there is only a difference small between temperature of the water under the ice (0°C) and the water on the bottom (4°C). However, in the summer most lakes with sufficient depth (greater than 30 feet) are stratified into three distinct lavers ofdifferent temperatures. These layers are referred to as the epilimnion (warm surface waters) and hypolimnion (cold bottom waters) which are separated by the metalimnion, or thermocline layer, stratum of rapidly changing temperature. The physical and chemical changes within these layers influence the cycling of nutrients and other elements within the lake.

During summer stratification the thermocline prevents dissolved oxygen produced by plant photosynthesis in the warm waters of the well-lit epilimnion from reaching the cold dark hypolimnion waters. The

hypolimnion only has the dissolved oxygen it acquired during the short two-week spring overturn. This finite oxygen supply is gradually used by the bacteria in the water to decompose the dead plant and animal organic matter that rains down into the hypolimnion from the epilimnion, where it is produced. With no opportunity for resupply the dissolved oxygen in the hypolimnion waters is gradually exhausted. The greater the supply of organic matter from the epilimnion and the smaller the volume of water in the hypolimnion the more rapid the oxygen depletion in the hypolimnion. Highly productive eutrophic lakes with small hypolimnetic volumes can lose their dissolved oxygen in a matter of a few weeks after spring overturn ends and summer stratification Conversely, low productive begins. oligotrophic lakes with hypolimnetic volumes can retain high oxygen levels all summer.

This figure shows how lakes over 25 feet deep are divided into three layers during the summer.

When a lake's hypolimnion dissolved oxygen supply is depleted, significant changes occur in the lake. species like trout and whitefish that require cold water and high dissolved oxygen levels are not able to survive. With no dissolved oxygen in the water the chemistry of the bottom sediments are changed resulting in the release of the plant nutrient phosphorus into the water from the sediments. As a result the phosphorus concentrations in the hypolimnion of productive eutrophic and hypereutrophic lakes can reach extremely high levels. During major summer storms or at fall overturn, this phosphorus can be mixed into the surface waters to produce nuisance algae blooms.

Some eutrophic lakes of moderate depth (25 to 35 feet maximum deep) can stratify, lose their hypolimnion dissolved oxygen and then destratify with each summer storm. So much phosphorus can be brought to the surface water from these temporary stratifications and destratifications that the primary source of phosphorus for the lake is not the watershed but the lake itself in the form of internal loading or recycling.

Besides the typical lake stratification pattern just described, it is now known that some Michigan lakes may not follow this pattern. Small lakes with significant depth, and situated in hilly terrain or protected from strong wind forces, may not completely circulate during spring overturn every year. Additionally, some lakes deep enough to stratify will not, if they have a long fetch oriented to the prevailing wind

or are influenced by major incoming river currents. Finally, lakes with significant groundwater inflow may have low dissolved oxygen concentrations due to the influence of the groundwater instead of the lake's productivity and biological decomposition.

The dissolved oxygen and temperature regime of a lake is important to know in order to develop appropriate management plans. A lake's oxygen and temperature patterns not only influence the physical and chemical qualities of a lake but the sources and quantities of phosphorus, as well as the types of fish and animal populations.

Aquatic Plant Mapping

A major component of the plant kingdom in lakes is the large, leafy, rooted plants. Compared to the microscopic algae the rooted plants are large. Sometimes they are collectively called the "macrophytes" ("macro" meaning large and "phyte" meaning plant). These macrophytes are the plants that people sometimes complain about and refer to as lake weeds.

Far from being weeds, macrophytes or rooted aquatic plants are a natural and essential part of the lake, just as grasses, shrubs and trees are a natural part of the land. Their roots are a fabric for holding sediments in place, reducing erosion and maintaining bottom stability. They provide habitat for fish, including structure for food organisms, nursery

areas, foraging and predator avoidance. Waterfowl, shore birds and aquatic mammals use plants to forage on and within, and as nesting materials and cover.

Though plants are important to the overabundant plants negatively affect fish populations, fishing and the recreational activities of property owners. Rooted plant populations increase in abundance as nutrient concentrations increase in the lake. As lakes become more eutrophic rooted plant populations increase. They are rarely a problem in oligotrophic lakes, only occasionally a problem in mesotrophic sometimes a problem in eutrophic and often a problem hypereutrophic lakes.

In certain eutrophic and hypereutrophic lakes with abundant rooted plants it may be advantageous to manage the lake and its aquatic plants for the maximum benefit of all users. To be able to do this effectively it is necessary to know the plant species present in the lake and their relative abundance and location. A map of the lake showing the plant population locations and densities greatly aids management projects.

CLMP PROJECT RESULTS

--IMPORTANT--

CLMP monitoring results for participating lakes are now available on the web in addition to being

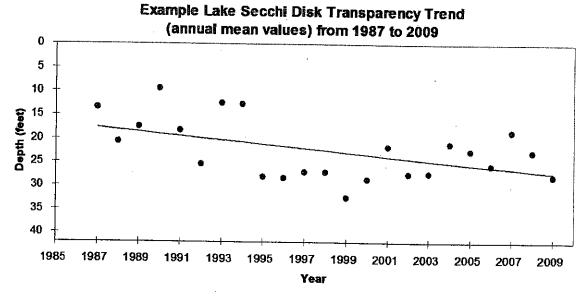
presented in summary form here in the annual report. To view current year and past results, please visit MiCorps' Data Exchange Network at www.micorps.net (select Exchange") and follow the instructions to find data on your lake of interest. On the site, you may search the database for lakes by lake name, county or watershed. You can also limit the data delivered to you by date monitoring parameter(s). Additionally monitoring data will appear on the Data Exchange well in advance of publication of the annual CLMP volunteers may also report. find instructions on the website about how to enter their own data into the Data Exchange.

Secchi Disk Transparency

Citizen volunteers measure Secchi disk transparency from late spring to the end of the summer. Ideally, 18 weekly measurements are made from mid-May through mid-September. As a minimum, eight equally spaced measurements from the end of May to the beginning of September are accepted to provide a good summer transparency mean (average) for the lake. Frequent transparency measurements are necessary throughout the growing season since algal species composition in lakes can change significantly during the spring and summer months, which dramatically affect overall water clarity.

A summary of the transparency data collected by the lake volunteers during

2010 is included in Appendix 1. The number of measurements, or readings, made between mid-May mid-September and the minimum and maximum Secchi disk transparency values are included for each lake that participated in the program. those lakes with eight or more evenly spaced readings over this time period, the mean, median, standard deviation, and Carlson $\mathrm{TSI}_{\mathrm{SD}}$ values calculated and listed


The mean, or average, is simply the sum of the measurements divided by the number of measurements. The median is the middle value when the set of measurements is ordered from lowest to highest value. The standard deviation is a common statistical determination of the dispersion, or variability, in a set of data.

The data range and standard deviation gives an indication of seasonal variability in transparency in the lake. Lakes with highly variable Secchi disk readings need to be sampled frequently to provide a representative mean summer

transparency value. Few measurements and inconsistent sampling periods for these lakes will result in unreliable data for annual comparisons.

The TSIsD values were calculated using Carlson's equations (see page 7) and the mean summer transparency values. (Note: the mean transparency value is converted from feet to meters the TSI_{SD} calculation) graphical relationship (see page 8) can be used to relate the TSIsD value to the general trophic status classification the lake (i.e., oligotrophic. mesotrophic, eutrophic) as well as to provide a rough estimate of summer chlorophyll a and total phosphorus levels in the lake. If the transparency measurements are made properly and consistently year after year, the Secchi disk transparency annual means or TSI_{SD} values can be compared to evaluate changes, or trends, in trophic status of the lake over time, see the figure below.

During 2010, Secchi disk transparency data were reported for 193 lakes (215

basins). Approximately 3049 transparency measurements were reported, ranging from 1.0 to 46.0 feet. For the lakes with eight or more equally spaced readings between mid-May and mid-September, the overall mean. or average, Secchi disk transparency was 12.8 feet and the median value was 11.0 feet. The Carlson TSI_{SD} values ranged from 27 to 65 for these lakes with a mean value of 42. A Carlson TSI value of 42 is generally indicative ofmesotrophic lake (see page 7).

Secchi disk transparency measurements were reported for 193 of the 219 enrolled lakes for a participation rate of 88%.

Total Phosphorus

Phosphorus is one of several essential nutrients that algae need to grow and reproduce. For most lakes in Michigan, phosphorus is the most important nutrient, the limiting factor, for algae growth. The total amount of phosphorus in the water is typically used to predict the level of productivity in a lake. An increase in phosphorus over time is a measure of nutrient enrichment in a lake.

The CLMP volunteers monitor for total phosphorus during spring overturn, when the lake is generally well mixed from top to bottom, and during late summer, when the lake is at maximum temperature stratification from the surface to the bottom. Spring overturn is an opportune time of the year to sample just the surface of a lake to obtain a

representative sample for estimating the total amount of phosphorus in the lake. A surface sample collected during late summer represents only the upper water layer of the lake, the epilimnion. where most productivity occurs. The late summer total phosphorus results, along with the Secchi disk transparency and chlorophyll measurements, are used to determine the trophic status of the The spring overturn total phosphorus data, collected year after are useful for vear. evaluating nutrient enrichment in the lake.

Total phosphorus results for the 2010 CLMP are included in Appendix 2. The spring total phosphorus data are listed first, followed by the late summer data. The TSITP values were calculated using Carlson's equations (see page 7) and the late summer total phosphorus data. Results from replicate and side-by-side sampling are also provided. Approximately 10% of the replicate samples collected by the volunteers were analyzed as part of the data quality control process for $_{
m the}$ CLMP. Also. the DEQ participated in side-by-side sampling on approximately 5% of the lakes.

During 2010, samples for total phosphorus measurements were collected on 193 lakes. The spring overturn total phosphorus results ranged from <5 to 125 ug/l with a mean (average) of 14.1 ug/l and a median value of 11 ug/l. The late summer total phosphorus results ranged from <5 to 90 ug/l with 14.5 ug/l as the mean and 11 ug/l as the median. The Carlson TSITP values

ranged from <27 to 69 for these lakes with a mean value of 39. A Carlson TSI value of 39 is generally indicative of a very good quality mesotrophic lake (see page 7).

For the spring overturn sampling, 152 total phosphorus samples were turned in from 163 enrolled lakes, for an 93% participation rate. For late summer sampling, 182 samples were received from 192 enrolled lakes/basins for a 95% participation rate.

Chlorophyll a

Chlorophyll is the green photosynthetic pigment in the cells of plants. The amount of algae in a lake can be estimated by measuring the chlorophyll a concentration in the water. As an algal productivity indicator, chlorophyll a is often used to determine the trophic status of a lake.

Chlorophyll monitoring was added to the CLMP in 1998. Volunteers were asked to collect and process five sets of chlorophyll a samples, one set per month from May through September. For purposes of calculating TSI values only those lakes that had data for at least four of the five sampling events were used. During 2010 volunteers collected a minimum of four samples on 113 lakes (116 basins).

Results from the chlorophyll monitoring for 2010 are included in Appendix 3. Results for each monthly sampling event are listed as well as the mean, median, and standard deviation of the monthly data for each lake. The TSI_{CHL} values were

calculated using Carlson's equations (see page 7) and the median summer chlorophyll values. Results from the replicate and side-by-side sampling are also provided. Side-by-side and replicate samples were collected and analyzed for about 6 percent of the lakes.

A total of 609 chlorophyll samples were collected and processed in 2010. The chlorophyll a levels ranged from <1 to 160.0 ug/l over the five-month sampling period. The overall mean (average) was 4.8 ug/l and the median was 2.8 ug/l. The Carlson TSI_{CHL} values ranged from <31 to 63 with a mean value of 43. A Carlson TSI value of 43 is generally indicative of a good quality mesotrophic lake (see page 7).

During 2010, a total of 124 lakes (127 basins) registered for chlorophyll sampling. A total of 121 lakes participated minimally by turning in at least one sample, for a minimum participation rate of 98%. A total of 113 lakes turned in at least four samples for a complete participation rate of 91%. Six samples were turned in, but not processed due to quality control issues for a 1% rejection rate.

TSI Comparisons

The TSI_{CHL}, TSI_{SD}, and TSI_{TP} values for the individual lakes can be compared to provide useful information about the factors controlling the overall trophic status in these lakes (Carlson and Simpson, 1996). For lakes where phosphorus is

the limiting factor for algae growth, all three TSI values should be nearly equal. However, this may not always be the case. For example, the TSI_{SD} may be significantly larger than the TSITP and TSICHL values for lakes that precipitate calcium carbonate, or marl. during the summer. The marl particles in the water column would scatter light and reduce transparency in these lakes, which would increase the TSI_{SD}. Also, phosphorus may adsorb to the marl and become unavailable for algae growth, which would reduce the TSIchl. For lakes where zooplankton grazing or some factor other than phosphorus limits algal biomass, the TSITP may be significantly larger than the TSI_{SD} and TSI_{CHL}.

Dissolved Oxygen and Temperature

Temperature and dissolved oxygen are typically measured as surface-tobottom profiles over the deep part of Temperature is usually the lake. measured with a thermometer or an electronic meter called a themistor. Dissolved oxygen is either measured with an electronic meter or by a chemical test. The CLMP uses an electronic meter (YSI 95D or 550A) designed to both measure temperature, with a themistor, and dissolved oxygen. The meter is calibrated by the volunteer monitor before each sampling event.

Dissolved oxygen and temperature are measured from the surface to within 3 feet of the bottom, as a profile, in the

deepest basin of the lake. Measurements are taken at 5-foot intervals in the upper part of the water column. Through the mid-depth region or thermocline (15 to 45 feet), measurements are taken at 21/2 foot intervals. Below the thermocline. measurements are usually made every 5 feet. Measurements are made every two weeks from mid-May to mid-September in the same deep basin location.

During 2010, CLMP participants in dissolved oxygen/temperature project sampled 44 lakes (46 basins). A · total of 421 dissolved oxygen/temperature profiles (over 4500 measurements) were recorded. The lakes involved in the project are identified in Appendix 4. The results of the sampling are highly varied depending upon the size, depth, volume and productivity of the lake sampled. Because of these highly varied results and the amount of individual data collected, each lake's results are not included in this report. Each participating lake community will receive individual data graphs for Instead of individual their lake. results, representative oxygen and temperature patterns are illustrated in Appendix 4. For the most part. data collected on lakes participating in the 2010 project are used to present representative these patterns. Volunteer monitors may compare the results from their lake with the patterns illustrated in Appendix 4.

While it is not possible to illustrate every conceivable temperature and dissolved oxygen scheme that may

A PROFILE OF HOW A COMMUNITY HAS USED CLMP DATA TO PROTECT THEIR LAKE

Submitted by Jim Novitski, Lake Management Chair, Perch Lake Owner Association

Perch Lake is located in north central Iron County in the Upper Peninsula of Michigan. The surface area of the lake is roughly 1,000 acres with an average depth of about 8 feet, with the deepest area around 15 feet, in the vicinity of the only island on the lake. The water is quite stained with two creeks emptying into it. A public boat landing and Forest Service campground are located on the west shore. The shoreline is about half privately owned and half Forest Service land. There is no electricity service available within ten miles.

Of the approximately forty private owners, about half formed a lake association about seven or eight years ago. The Perch Lake Owners Association (PLOA) was formed to protect and improve the lake and its surroundings. My name is Jim Novitski and I volunteered to chair the Lake Management Committee.

Two years ago Dave Crowe, one of our members, contacted Michigan Lake and Stream Associations (MLSA) about signing up for a few tests to do on the lake through the Cooperative Lakes Monitoring Program (CLMP).

The first year we signed up for Secchi disk and summer phosphorous. We sat down and decided to sign up for more tests the following year. We signed up for Secchi disk, spring and summer phosphorous, chlorophyll and aquatic plant mapping. We are concerned about an invasion of Eurasian Water Milfoil (EWM) to the lake. Surrounding lakes have it, but luckily we have not found it. We joined aquatic plant mapping program to help us keep a lookout for an EWM invasion. It has proven to be very helpful for monitoring the lake not only for EWM but a few other problem invasive plants as well. The spring training sessions at the MLSA Annual Meeting were very helpful, not only for learning the testing procedures, but also for providing ideas on how to recruit a volunteer base.

The summer training session provided by the CLMP at our lake for the aquatic plant mapping program, which was taught by Jo Latimore of MSU, was provided with lots of helpful information and enthusiasm. Fifteen volunteers got hands-on experience doing the plant sampling and mapping. We chose to split our large lake in half, and conduct the mapping over two years so it wasn't such a daunting task for our volunteers.

In 2011 we are going to sign up for the same programs as last year, plus finishing up our aquatic plant mapping. We have some very enthusiastic and helpful people involved in volunteering up at the lake. I would like to sincerely thank them for their time and effort and look forward to 2011.

For more information on Perch Lake stewardship efforts, contact Jim Novitski at <u>inovitski@bayland.net</u>

Do you have a success story of how your community has used CLMP data to implement a protection program for your lake? We would like to hear from you. Contact Bill Dimond at 517-241-9565 or dimondw@michigan.gov.

ACKNOWLEDGMENTS

Ralph Bednarz of the Michigan Department of Natural Resources & Environment (formerly Department of Environmental Quality), Jo Latimore from the Michigan State University Department of Fisheries and Wildlife, and Paul Steen of the Huron River Watershed Council prepared this report. Additionally, those involved in coordinating the CLMP include Scott Brown and Jean Roth of Michigan Lake and Stream Associations, Inc., and Ric Lawson of the Huron River Watershed Council. Support was provided by Anne Sturm of the Great Lakes Commission who maintained the MiCorps Data Exchange and Jack Wuycheck of the Michigan Department of Natural Resources & Environment who coordinated entry of historical CLMP data and clarified historic and current sampling site locations.

We sincerely thank the dedicated volunteers who have made the CLMP one of the nation's most successful citizen volunteer lake monitoring programs. We are also indebted to Ralph Vogel for constructing the Secchi disks for the CLMP, and to those volunteers who entered their data into the MiCorps Data Exchange.

The Michigan Department of Natural Resources & Environment will not discriminate against any individual or group on the basis of race, sex, religion, age, national origin, color, marital status, disability, or political beliefs. Questions or concerns should be directed to the Office of Personnel Services, PO Box 30473, Lansing, MI 48909.

develop in a lake, five common summer patterns are presented in Appendix 4. These five patterns include: an oligotrophic lake with a very large volume hypolimnion, an oligo/mesotrophic lake with a large volume hypolimnion, a mesotrophic lake moderate with а volume hypolimnion, a hypereutrophic lake with a small volume hypolimnion, and a mesotrophic lake which is too shallow to maintain stratification Such lakes usually have the same temperature and dissolved oxygen concentrations from surface-to-bottom as a result of frequent mixing.

AQUATIC PLANT SAMPLING RAKE Cut handles off two garden rakes and bolt rakes back to back with two "C" bolts. Use a small hose clamp between rake tines to prevent side to side slipping. Drill a hole in remaining wooden handle core and twist a moderately large eye bolt into hole. The rope should be about 20 feet long. File off any sharp edges. Wear gloves when using rake to protect hands from cuts.

Aquatic Plant Mapping

To complete the volunteer's aquatic plant map and data sheets, sampling transects are identified on each lake. Along each transect, plant samples are collected at the one, four and eight foot depths with a constructed sampling rake. The rake is tossed out into the lake and retrieved from the four compass directions. The density of each plant species is determined by its presence on one, two, three or all four of the rake tosses. The data from all the transects are calculated to create the plant distribution map and data A complete description of $\mathbf{sheet}.$ sampling procedures is provided in Wandell and Wolfson (2007).

During 2003, an evaluation of the aquatic plant monitoring project was made and presented in the CLMP 2003 Report, Appendix 5. The results of this study of volunteer aquatic plant survey methods suggested that:

Citizen volunteers are capable of conducting good qualitative aquatic plant surveys, if properly trained and provided limited professional assistance, and

Volunteer survey methods compare reasonably well with DEQ methods to qualify aquatic plant species, densities and distributions in a lake.

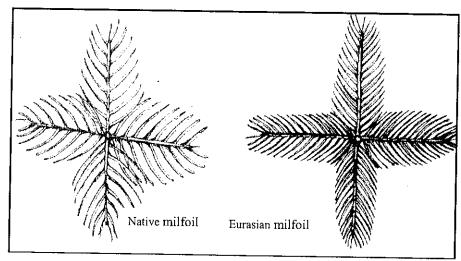
The results warranted continuing aquatic plant monitoring as a component of the CLMP.

During 2010, CLMP participants in the aquatic plant project sampled one new lake — Perch Lake in Iron County.

In 2010, Perch Lake had TSI values of 48 for Secchi disk, 51 for Total Phosphorus, and 42 for chlorophyll.

These values suggest that the lake is mesotrophic. Communities of rooted plants were diverse but usually not dense around the lake, with no problematic invasive species found. For more information on the Perch Lake efforts, see page 19.

Exotic Aquatic Plant Watch -Pilot Project


Beginning in 2007, the CLMP sponsored a pilot monitoring project to identify and map exotic aquatic plants in Michigan lakes, with the intent to add the Exotic Aquatic Plant Watch as a permanent component of the CLMP.

If exotic plant populations are found early before they become widespread around the lake, rapid response to the infestations will improve the options for management. The cost for treating small infestations will be considerably less than waiting until the exotic, invasive plants are covering large areas of the lake.

Volunteer participants are trained to identify three exotic aquatic plants of concern in Michigan: curly-leaf pondweed, Eurasian milfoil, and Hydrilla. Using a GPS unit, the participants survey their lake and map the location of any exotic plant beds with the GPS unit.

The Exotic Aquatic Plant Watch project remained in pilot status through 2010. Steadily increasing enrollment and the high-quality data being generated by volunteers have shown the project to be of significant value to the CLMP. Consequently, the Exotic Watch will become a standard component of the CLMP in 2011.

In 2010, 20 lakes enrolled in the Exotic Aquatic Plant Watch, and 8 submitted reports, for a participation rate of 40%. Participants and example results are presented in Appendix 5.

Stem cross sections at a leaf node of a typical native milfoil (left) and Eurasian milfoil (right). Note that Eurasian milfoil has more leaflets on each leaf than native milfoils. Eurasian milfoil generally has more than 12 leaflets on one side of the leaf's central axis, while native milfoils have fewer than 12.

DATA USE

This year, a voluntary survey on the MiCorps Data Exchange web page helped track accessing and using the data collected in the CLMP. Eighty-seven data users responded to the survey. A summary of the results is below.

29% - Lake associations, CLMP volunteers
 25% - Academia (students & professors from a variety of institutions, including Grand Valley State University,
 Eastern Michigan University, and the University of Wisconsin)

11% - State government (Michigan DNRE, and others including the Utah Division of Water Quality, using the CLMP as a guide to start their own program!)

10% - Business (realtors, environmental engineers)

10% - Interested individuals

10% - Non-governmental organizations (e.g., Huron River Watershed Council, Trout Unlimited, Sierra Club)

5% - Federal government

CONCLUSION

Data from the CLMP provide citizens with basic information on their lakes that can be used as indicators of the lake's productivity. If measured over many years, these data may be useful in documenting changes and trends in water quality. More importantly these data will assist the local community with the management of their lake. Michigan's lakes are high quality resources that should be protected from nutrient and sediment inputs to keep them as the special places we use To do this, each lake and enjoy. should have its own management

plan.

Although CLMP data provide very useful water quality information, for certain management programs it may be necessary to assemble more specific data or information on a lake's condition. The DNRE and MLSA may be able to help you obtain additional information on your lake.

REFERENCES

Carlson, R.E. 1977. A trophic state index for lakes. *Limnol. Oceanogr.* 22(2): 361-369

Carlson, R. and Simpson, J. 1996. A Coordinator's Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society. February 1996.

Hamlin Lake Improvement Board. 1994.
Protecting Hamlin Lake - a
homeowners guide. Prepared by:
Progressive Architecture Engineering
Planning, Grand Rapids, MI. July
1994.

Michigan DNR. 1990. Protecting Inland Lakes - a watershed management guidebook. Prepared by: Planning and Zoning Center, Inc., Lansing, MI. February 1990.

Minnesota PCA. 1991. Citizen Lake-Monitoring Program - 1990 report on the transparency of Minnesota lakes. Minnesota Pollution Control Agency, Division of Water Quality. St. Paul, MN. June 1991.

Wandell, H. and Wolfson, L. 2007. A
Citizen's Guide for the Identification,
Mapping and Management of the
Common Rooted Aquatic Plants of
Michigan Lakes. (2nd Edition) MSU
Extension Water Quality Series WQ55.

2010 CLMP Volunteer Lake Monitors

In 2010, more than 300 Volunteer Lake Monitors participated in Michigan's Cooperative Lakes Monitoring Program. The CLMP staff welcomes all the new volunteers, and commends all of the volunteers' dedication and enthusiasm!

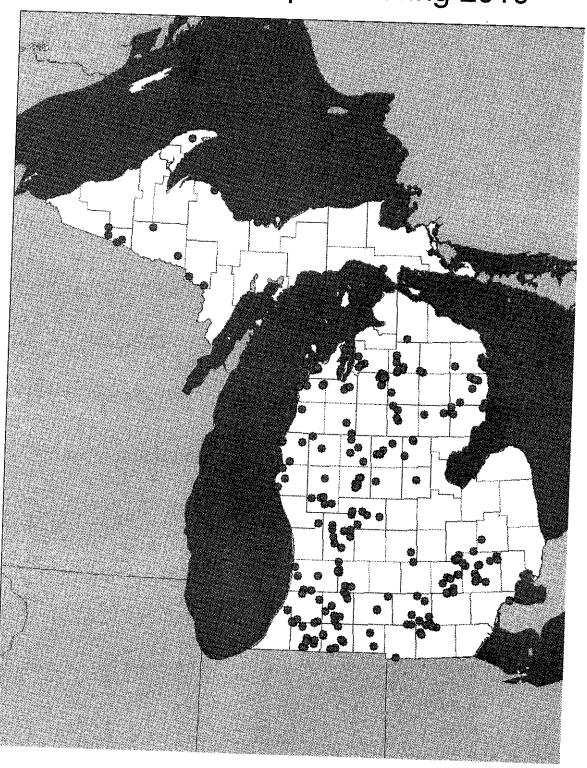
David Allen Russ Anton Al Apsitis Barbara Armstrong Dan Bailey Rick Bakka David Ball Susan Barnes Neil Barr Nancy Beckwith Julie Bennett Diane Blanchard Emery Blanksma Arthur Bombrys David Boprie Mike Bosela John Bosker Betty Bosowski Richard Bosowski Bob Boyd Mark Bradburn Dennis Bradley Leonard Brockhahn Dick Brown Scott Brown Clete Brummel Carim Calkins Dave Card Paul Carmichael Sally Casey Gary Chisholm Christopher Chupp Justus Chupp Rodney Chupp Dave Clark Steve Clouse Gary Cogston Jim Collins Chuck Connelly Craig Cotterman Margaret Couturier Gerald Cox Paul Curell Dennis Curtice Phil Cushman Paul Dalpra Stacy Daniels Linda Davis

Harry Dawson

Greg Dedes Mike Devarenne John DiGiovanni Dave Dohring Arnold Domanus Jr. Gary Doyle Kevin Doyle Duane Drake Terry Dugan Andra DuPont Janet Durbin Wes Durbin Allen Dyer John Esch Daniel Evert Jeffery Falknor Donald Ferguson Deborah Ferry William Finzel Daniel Fleck Chris Floyd Bob Forche Bruce Frappier Dale French William Fronk Roger Gaede John Gajar Mike Gallagher Ted Gatto Laurence Gavin William Gay Douglas Gembis Charles Gill Ken Gill Joe Goossens Diane Graves Andrea Grix Stan Grove Robert Hake Connie Hales Cary Hamann George Hanley Larry Harker John Hartsig John Hause Bonnie Hay Ron Herron Nanette Hibler Ed Highfield

Virginia Himich Lynn Hoepfinger John Hoffman Emmett Holmes Karen Holmes Roger Hopkins Susan Houseman Richard Hubbard Ruth Hubbard Sheryl Hugger Gary Hunt Sharon Hurlbert Bob Hutchings Bill Ingle Bonnie Isaacs Jeff Jayne Thomas Jenkins Frederick Jensen Dan Johnson Gary Johnson Bonnie Kanitz William Kantor Jeff Kempfer Claudia Kerbawy Martha Kern-Boprie Bill Kestermeier Emil Kezerle Wayne Kiefer Netty Kiekover Calvin Killen Marvin Kingsley Phil Kinney James Kollar John Kolleth Ronald Kreiger Sheri Kurtyak Brian Kusch Jim Langerveld Mary Lantz Phil Laven David Lawrence Mitchell Le Claire John Lewandowski Bruce Lichliter John Lindahl Kenneth Lindstrom Ernest (Mike) Litch Mark Little Timothy Locker

Doris Loomans Lonnie Loveland Steve Lucas Joe Maguire Erin Malloy Mike Mankvitz John Mater Jack Matthews David Maxson Eldonna May Timothy McCarthy Rex McCormick Char McDonnell Jim McDowell Alan McGowen Alan McNamara Robert McPertlin Rick Meeks Rich Meeuwenberg Joan Melvin Jeff Menz Dale Miller David Miller Jim Miller Bill Miner Pete Minich Terry Monson Frank Montgomery Thomas Moore Chauncey Moran Darlene Morey Dick Morey Pam Moseley Thomas Murphy Tim Murphy Michael Mutschler James Nadeau Kenneth Nelson Patricia Nelson Ed Novak James Novitski Steve Ockaskis Collin O'Dea Thomas Osborn Jim Osbourn Michael Pardonoff Ray Parker Jane Patterson Dale Petersen Chuck Pilar Joe Plunkey Douglas Pohlod Joe Porter Geary Powley Gerry Powley James Pratt **Bob Price** John Price


Joe Primaich

Chuck Pugh Judith Pugh George Purlee Robert Radtke Sam Ramrattan Raymond Reinertson Jack Reinhardt Roy Retting Kurt Richardson George Richev Janet Rimar Robert Robertson Jim Ross Jean Roth Steve Roth Tom Rush Rick Russwurm Bob Sacksteder George SanFacon Kim Sapkowski Sarah Saum Robert Schirado Katie Schlueter Jack Schoeppach Robert Schuleit Al Schwennessen Carl Seaver Connie Selles Dale Sharpee Judy Shatney Gerald Shepard John Sheppard John Sick Mike Single Michael Smith Sam Smith Paul Sniadecki Cathy Snygg Linda Stafford Gary Stelow Kathleen Stelow Harry Stier John Stivers Daniel Stock Anthony Stone Chris Streeter Jan Stuhlmann Ron Tacia Robert Temple Greg Thebo Thomas Thering Bill Tidey Rusty Trapp Robert Turnquist Joan Uhley James Van Herweg Robert VanDenBrouck Barb VanDenEeden

Al Vichunas Ralph Vogel Jerry Vomish Sam Vukson Ed Waits Jim Walker Don Wallace Jack Walls Michael Walma Jim Walters Howard Wandell Milton Weeks Judd Wellard Mary Ann Wellard Dirk Westra Thomas Wheeler Susan White Emily Whittaker Blair Wickman Jon Wilford James Wilkinson John Wilks Carol Wilson Rick Winkley Frank Wolf Gary Wolter Pat Wolters Chuck Wolverton Sam Wright Frank Wrobel Larry York Leslie York Carolyn Zader Sue Zanotti Dennis Zimmerman Cheryl Zuelke

Stuart Vedder

Statewide Distribution of CLMP Lakes Sampled During 2010

APPENDICES

Appendix 1

2010 Secchi Disk Transparency Results

Appendix 2

2010 Total Phosphorus Results

Appendix 3

2010 Chlorophyll Results

Appendix 4

2010 Dissolved Oxygen and Temperature Participating Lakes and Example Results

Appendix 5

2010 Exotic Aquatic Plant Watch Participating Lakes and Example Results

6 4

15

11 29.5 45 5

Appendix 1 2010 Cooperative Lakes Monitoring Program Secchi Disk Transparency

Map above shows the distribution of the 219 lakes enrolled in Secchi Disk Transparency in the 2010 CLMP Program.

Recorded Secchi Disk Transparency Values:

Mean (average):12.8 feet

Minimum:

1.0 feet

Maximum:

46.0 feet [Higgins Lake (Roscommon Co.) and Torch Lake

(Antrim Co.)]

APPENDIX 1 2010 COOPERATIVE LAKES MONITORING PROGRAM SECCHI DISK TRANSPARENCY RESULTS

260	>		•	Secchi Disk		nsparer	Transparency (feet)		Carlson
70 27 0	County	Site ID Number Number of	Number of	Range				Standard	TSIsn
Libbard (6)			Readings	Min	Max	Mean	Median	Deviation	(transparency)
Hubbard (8)	Alcona	010106	16	10.5	27	17.0	- 1	4.6	36
Histor (Table)	Alcona	010107	12	10	26	16.1	15.0	4.7	37
Unitablian (Twellty)	Gladwin	260119	15	5.5	14.5	9.1	9.0	ນ <u>.</u>	45.
	Allegan	030203	17	4	17	7.9	60	<u> </u>	47
independence	Marquette	520149	9	Φ	5	100	તું કે ક	ა -: დ -:	, <u>,</u>
indian	Kalamazoo	390305	14	Cī	23	129	10.0	7 ; 9 j	<u>+</u> ĉ
Indian	Kalkaska	400015	10	9.5	<u>1</u>	3 i	3 c) c	4 C
Indian	Osceola	670227	19	7	ې م	2 0) () ()) -) i	9.0
sabella	Isabella	370135	* [ō		. 10.0	20.0	3.0	34
Island	Grand Traverse	280164	6	3	20	102	20	,	2
Keeler	Van Buren	800482	*	i	į	2	0.0	<u>.</u>	34
Nimbali	Newaygo	620107	ಪ	တ	<u>.</u>	0	0	0	ì
KIRKWOOD	Oakland	631116	*	,	. ;	;		 C	CP C
Kilnger	St. Joseph	750136	1 8	4	21	10.6	ж Э	ກ ພ	Š
Lakeville	Oakland	630670	14	o	3	3 6	<u>,</u>	∡ (ن ذ	5
Lancelot (1)	Gladwin	260104	10	4 73	10.5	7 2	ρ.	1 · C	2 6
Lancelot (2)	Gladwin	260112	10	<u>ე</u>	10	» - ν ί	ж с Э с	ນ ເ	48
Lancelot (3)	Gladwin	260113	10	ტ ტ	9.5	7 <u>9</u>	7 %	<u>,</u>	7.7 ‡
Lancer (1)	Gladwin	260074	3	œ	14	10.2	ы с О :	17	, <u>,</u>
Lancer (2)	Gladwin	260114	13	& 5 1	ਰ	9 ;	9 6	⊃ - n -	î î
Lancer (3)	Gladwin	260115	3	ω	4.5	ယ (၁	4.0	0.0	α ς 1 τ
Lancer (4)	Gladwin	260116	3	4	ဖ	7.3	8	1 (i	<u> </u>
Lancina Lancina	Gladwin	260117	13		ĊΊ	ω >	ယြ	n 9	<u> </u>
Lansing	ingham	330137	14	œ 5	14	10.0	တ သ	<u> </u>	<u>~</u> 6
Lity	Clare	180066	*				(ċ	‡
Little Long	Barry/Kalamazoo	080279	14	95	23	134	13 O	د ب	20
Long	Gogebic	270179	7	14	26	-	ċ	-	ţ
Long	losco	350076	19	11.5	15.5	13.4	13 O	1 4	ò
Long	Oakland	631118	18	1	21	13 F	120) - 2 +	9 t
LOON	losco	350078	*				į		Ü

APPENDIX 1 2010 COOPERATIVE LAKES MONITORING PROGRAM SECCHI DISK TRANSPARENCY RESULTS

* No measurement reported

Lake

County

Site ID Number Number of

Secchi Disk Transparency (feet)

Carlson TSI_{SD}

Readings

Range Min Max

Standard **TSI_{SD}**Mean Median Deviation (transparency)

> Maximum value includes measurements made on lake bottom

Appendix 2 2010 Cooperative Lakes Monitoring Program Total Phosphorus Results

Map above shows the distribution of the 192 lakes enrolled in late summer Total Phosphorus monitoring in the 2010 CLMP Program.

Recorded Total Phosphorus Values: Spring Mean: 14.1 µg/l Minimum: <5 μg/ľ Maximum: 125 μg/l (L. Okonoka, Wayne Co.)

Summer Mean: 14.5 μ g/l Minimum: <5 μg/l Maximum: 90 μg/l (Goshorn L., Allegan Co.)

APPENDIX 2 2010 COOPERATIVE LAKES MONITORING PROGRAM TOTAL PHOSPHORUS RESULTS

Lake Ann Arbutus	County Benzie Grand Traverse	Site ID Number 100082 280109	Site ID To Number Spring Overturn Vol Rep. DE 100082 280109 4 T	Total Phosphorus turn Late Su DEQ Rep. Vol R	ite Summer I Rep DEQ	Rep
Arnold Badger	Clare Alcona	180107 010122	14 24	1 8		
Baldwin	Montcalm	590171	20	<u></u> -	7	
Barlow	Barry	080176	10	14	1 c.d	
Barton	Kalamazoo	390215	14	<u> </u>		
Base Line	Livingston/Wash	470149		10		
Bass	Katkaska	400129	*		ST.	
Bear	Alcona	010125	11	12	2 c	
Bear	Kalkaska	400026	රා			
Bear	Manistee	510257	9	12	2	
Beatons	Geogebic	270105	ΟΊ	11	_	
Beaver	Alpena	040097	9	ڻ. ت	01	
Bellaire	Antrim	050052	7	<i>c</i> >	ω ♥	
Big	Osceola	670056		40		
Big Pine Island	Kent	410437	19	23		
Bills (Waits)	Newaygo	620311	7	O) д, с	
Birch (Russwurm/Dugan)	Cass	140187	4 w.H	9		٠
Birch (Temple)	Cass	140061	6	4	1 т.н	
Blue	Mecosta	540092	α	10	_	
Blue (Big Blue)	Kalkaska	400016	9	5	O,	
Blue Heron	Wayne	821552	29	68	ω	
Blue, North	Kalkaska	400131	ω ¥	ω	3 w 3 w	
Bostwick	Kent	410322	*	33		
Brace, Upper	Calhoun	130206		12		
Bradford, Big	Otsego/Crawford	690036		ယ	3 w	
Brevoort	Mackinau	490036	15 14	12	14	

APPENDIX 2 2010 COOPERATIVE LAKES MONITORING PROGRAM TOTAL PHOSPHORUS RESULTS

			6			6	400031	Kalkaska	Cub
		12	<u>-</u>			7	640062	Oceana	Crystal
			12				590105	Montcalm	Crystal
			4 T				100066	Benzie	Crystal
			15			12	080071	Barry	Crooked, Upper
			16			8	400133	Kalkaska	Crooked, North
	15		7			∞	800535	Van Buren	Crooked, Little
	9	9	œ			13	800483	Van Buren	Crooked, Big (E. Basin)
			16 н			13	390599	Kalamazoo	Crooked
			*				700422	Ottawa	Crockery
		·	20			32	631196	Oakland	Cranberry
			œ			ග	750142	St. Joseph	Corey
			Đ			(J1	080259	Barry	Cobb
			15			26	590142	Montcalm	Clifford
		7	10				650042	Ogemaw	Clear
			7				380453	Jackson	Clear
			00			10	380173	Jackson	Clark
		7	3 ₩			Çī	050101	Antrim	Clam
			15				140055	Cass	Christiana
			<u> </u>			13	470597	Livingston	Chemung
			*			00	530287	Mason	Chancellor (Blue)
			7			10	350146	losco	Chain
			12			8	670238	Osceola	Center
			12 1				800241	Van Buren	Cedar
			œ			α	010017	Alcona/losco	Cedar
			<u> </u>			22	631113	Oakland	Buckhorn (North Buckhorn)
		-	15			10	380477	Jackson	Brown
			8			13	450222	Leelanau	Brooks
Rep	DEQ	Rep	Vol	Rep.	p. DEQ	Vol Rep.			
	er	rn Late Summe	Late		erturn	òpring O√	Number Spring Overturn	County	Lake
	₹	/gn) sn	osphor	al Pho	Tot		Site ID		W. 771

APPENDIX 2 2010 COOPERATIVE LAKES MONITORING PROGRAM TOTAL PHOSPHORUS RESULTS

		0#2 ID	\ \ \ !.	Total Pho	Total Phosphorus (ug/l)	<u>α</u>)		Carlson
	County	Number	Number Spring Overturn	rturn	Late Summer	mer		TSIτΡ
Land	County		Vol Rep.	DEQ Rep.	Vol Rep	p DEQ	Rep	(summer TP)
Deer	Alger	020127	10 9		11			39
Deer .	Oakland	631128	Ο Ί		12 н			40
Derby	Montcalm	590144			<u></u>	9		<u>ئ</u> ئ
Devils	Lenawee	460179	9 a		8			
Diamond	Cass	140039	თ		7 н			3 2
Diane	Hillsdale	300173	46		82			
Dinner	Gogebic	270126	16 °		15			
Duck	Calhoun	130172			10			3/
Duncan	Barry	080096	113		9			
Eagle	Allegan	030259	14		12 н			
Eagle	Cass	140057	9		: 11 +			
Eagle	Kalkaska	400130	4 w					
Earl	Livingston	470554	50			i		
Emerald (Button)	Kent	410709	*			17		
Evans	Lenawee	460309	10		· •			
Fair	Barry	080260	13		10 +			
Farwell	Jackson	380454	*		i o			
Fenton	Genesee	250241	11		12			
Fish	Van Buren	800461	10		21	-		
Fisher (Big Fisher)	Leelanau	450224	7		.≽			
Five Lakes (Lake #2)	Otsego	690157	30		16			
Five Lakes (Lake #3)	Otsego	690152			් රා			
Fremont	Newaygo	620029			i -1			
Freska	Kent	410702	18		1/ e			
Gallagher	Livingston	470210	18		22			
George	Clare	180056	_		ာ ပြ			3 1
Glen (Big Glen)	Leelanau	450049	i Oi		σ	ò		
Glen, Little	Léelanau	450050	υ υ		Œ	5		

620107 800482 280164 400015 390305 520149 030203 010106 540085 720164 720163 410703 670062 620032 670227 720028 530074 530073 720026 470568 390210 220060 6 2 36

ω ≶

<27

47 42 49

4

ರ

2010 COOPERATIVE LAKES MONITORING PROGRAM TOTAL PHOSPHORUS RESULTS APPENDIX 2

51 43 36 40

Klinger Kimball Keeler Island Indian

Indian Indian

Osceola

Kalkaska Kalamazoo Marquette Allegan Alcona

Van Buren Grand Traverse Hubbard

ndependence Hutchins Houghton (Station 2)

Roscommon

Roscommon Mecosta

Houghton (Station 1)

Horsehead

Kent

Roscommon

Osceola Newaygo Mason

24

Roscommon

Higgins (S. Basin) Higgins (N. Basin) Hess

Hamlin, Upper Hamfin, Lower

Mason

Dickinson Livingston Kalamazoo Van Buren Keweenaw Kalamazoo

ଜ୍ଞା

Hamburg

Hamilton

Gratiot

Gourdneck Goshom

Allegan

030650

County

Number Spring Overturn

Total Phosphorus (ug/l)

<u></u>

Rep. DEQ Rep.

<u>√</u>

Rep

DEQ

Rep

(summer TP)

Carlson TSITP

 $\frac{1}{\omega}$

 $^{\omega}$

Late Summer

Site ID

Lake

Gravel

800271 420030 390541

Lakeville

Oakland St. Joseph Newaygo

APPENDIX 2
2010 COOPERATIVE LAKES MONITORING PROGRAM
TOTAL PHOSPHORUS RESULTS

		Site ID			Tota	l Pho	sphore	Total Phosphorus (ug/l			Carlson
Lake	County	Number Spring Overturn Vol Rep. DE	Spring	Rep.		Rep.	Late ∜ol	.ate Summer /ol Rep	DEQ.	Rep	TSITP (summer TP)
Lancelot	Gladwin	260104	∞	7			24				50
Lancer	Gladwin	260116	51				18				46
Lansing	Ingham	330137	12,				11				
Lily	Clare	180066	<u></u>				*				
Little Long	Barry/Kalamazoo	080279	6	6	⇉	8 7	a, 9				
Long	Gogebic	270179	6 н,с				10				
Long	losco	350076	5 1				<u>-</u>				
Long ·	Oakland	631118					=				
Loon	losco	350078					*				
Magician	Cass	140065	ა ¥				8				34
Margrethe	Crawford	200157	6				4 т				<27
Mary	Iron	360071	10				14				
Maston	Kent	410764	12	16	14						
Maynard	Alcona	010126					20				
Mecosta	Mecosta	540057	۵				12				
Middle Straits	Oakland	630732	15				21				
Mirror	Jackson	380478	13	14			30				
Moon	Gogebic	270120	7				8	8			
Mud	Jackson	380469	15				*				
Murray	Kent	410268	14				3				
Muskellunge	Kent	410765	<u> </u>		13	-					
Muskellunge	Montcalm	590154	œ.				16		٠		
Nepessing	Lapeer	440220	13	15			25				
Okonoka	Wayne	821554	125				89				
Opal	Otsego	690129	9				9	6			
Ore	Livingston	470100					17				
Orion	Oakland	630554	1				15 +				
Osterhout	Allegan	030263	14				۵				

Page 6 of 8

APPENDIX 2 2010 COOPERATIVE LAKES MONITORING PROGRAM TOTAL PHOSPHORUS RESULTS

Lake Oxbow Papoose	C _C	County Oakland Kalkaska			Site ID Number Spring Overtui Vol Rep. [630666 12 400134 11	Site ID Number Spring Overtui Vol Rep. [630666 12 400134 11	Site ID Total Phosi Number Spring Overturn Vol Rep. DEQ Rep. 1 630666 12 400134 11	Site ID Total Phosi Number Spring Overturn Vol Rep. DEQ Rep. 1 630666 12 400134 11	Site ID Total Phosphorus Number Spring Overturn Vol Rep. DEQ Rep. Vol 630666 12 400134 11	Site ID Total Phosphorus (ug/line) Number Spring Overturn Vol Rep. DEQ Rep. Vol Rep. 630666 12 400134 11
ose Se	Oakland Kalkaska		630666 400134				12 17	12	12	12
Parke	Oakland		631119				18	18	18	18
Pentwater	Oceana		640313	_	_	_	14	14	14	14
Perch	fron		360046	360046 16		16	16 16	16 16	16 16	16 16
Perch	Otsego		690150							
Pickerel	St. Joseph Kalkaska		750314 700025	750314 12			* 12	* 12	* 12	* 12
Pickerel	Newaygo		400035 620066	400035 * 620066 *	620066 *	400035 * 620066 *	620066 *	ж ж	ж ж	ж ж
Pleasant	Jackson		380244	380244	380244	380244	380244 6			
Pleasant	Wexford		830183	830183 11		<u> </u>	11 11	11 11	11 11	11 11
Portage	St. Joseph		750313	750313	750313	750313	750313 24	·	·	·
Portage	Liv/Wash		810248	810248 12			12	12	12	12
Portage (Big Portage)	Jackson		380245				7	7	7	7
Pretty	Mecosta		540079	540079 6				6	6	6
Randall	Branch		120078	120078	120078	120078			32	32
Z;†e Derioù	Ogemaw		650022	-			4 w	4 w 13	4 w 13	4 w 13
Round	CIDION Lenawee		190146	190146 35				သ	19	19
Round	Livingston		470546				20	20 11	20 11	20 11
Round	Mecosta		540073				۵.	۵.	14	14
Sand	Lenawee	٠	460264	460264	460264	460264		9	9	9
Sanford	Benzie		100208	100208 8		œ	8	8	8	8
School Section	Mecosta		540080	540080 6			6	6	6	6
Shavehead Sherman	Cass		140071			: 15	15 15	15 15	15 15	15 15
Shinanalin	Kalamazoo		390382	390382 11	•-	•-	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>
oninagaug Shingle	Genesee		250519				2	2	2	2
Silver (Green Oak)	Livingston		470589	470589 10		<u> 1</u>	<u> 1</u>	10 9	10 9	10 9
	c				3	ā	Č	Č	Č	Č

APPENDIX 2 2010 COOPERATIVE LAKES MONITORING PROGRAM TOTAL PHOSPHORUS RESULTS

		Site ID			Total Phosph	sphor	orus (ug/l)	7		Carlson
Lake	County	Number Spring Overturn Vol Rep. DE	Spring Vol	Rep.	lurn DEQ Rep.	Late Vol	te Summer Rep	er Deq	Rep	TSITP (summer TP)
Silver	Van Buren	800534	13			6	,			30
Spider	Grand Traverse	280395			-	10				37
Squaw	Kalkaska	400135	20			14				42
Starvation	Kalkaska	400030	တ			Çī				27
Stone Ledge	Wexford	830186	15			19				47
Stony	Oceana	640049	27	21		22				49
Strawberry	Livingston	470213	16			15				43
Stuart (Lower Brace)	Calhoun	130388				10				37
Sweezey	Jackson	380470	27			12				40
Taylor	Oakland	631114	19	16		10				37
Templene	St. Joseph	750322	21			14	12			42
Thornapple RCascade Imp.	Kent	410686	*			53 н, г				61
Torch (N. Basin)	Antrim	050055	3 ¥			*				
Torch (S. Basin)	Antrim	050240	2 ¥			∞				34
Triangle	Livingston	470591	14			15				
Twin (Big Twin)	Kalkaska	400025	13			10				37
Twin, Little	Kalkaska	400013	<u> </u>			ِ 9 و				
Twin (Big Twin, North Twin)	Cass	140165	œ			т 20				
Twin (Little Twin, South Twin)	Cass	140166	10			9				
Twin, East	Montmorency	600013	œ	1		8				34
Twin, West	Montmorency	600014	œ			4				<27
Van Etten	losco	350201	27			25 °				51
Vaughn	Alcona	010049	*							
Viking	Otsego	690136	19			*				
Vineyard	Jackson	380263	9			10				
Wahbememe	St. Joseph	750313	*			9				36
Webinguaw	Newaygo	620283				19				
Wetmore	Allegan	030664				16 _H				44

APPENDIX 2 2010 COOPERATIVE LAKES MONITORING PROGRAM TOTAL PHOSPHORUS RESULTS

		Site ID		Total Phospho	sphoru	rus (ug/l	_		Carlson
	County	Number	Spring	Number Spring Overturn	Late	Late Summer	¥		TSITP
F0.70	County		<u></u>	Rep. DEQ Rep. Vol	<u>√</u> 0	Rep	Rep DEQ	Rep	(summer TP)
Wildwood	Cheboygan	160230	18		21				48
Windower	Clare	180069	9		7				32
Wolf	Lake	430026			*	-			
Woods	Kalamazoo	390542	22		22 н				49

Results Codes:

- No sample received or received too late to process.
- H Recommended laboratory holding time was exceeded.

N Non-homogeneous sample made analysis of sample questionable.

T Value reported is less than the reporting limit (5 ug/l). Result is estimated.

W Value is less than the method detection limit (3 ug/l)

- Used ink that ran on label
- Sample rejected not frozen when received
- Sample not collected at proper time may not be comparable to other data
- Sample received late; greatly exceeding holding time limits
- Date on label did not match data form
- No data form submitted
- Sample destroyed after submission lab handling error

Appendix 3 2010 Cooperative Lakes Monitoring Program Chlorophyll Results

Map above shows the distribution of the 124 lakes enrolled in Chlorophyll monitoring in the 2010 CLMP Program.

Recorded Chlorophyll Values:
Spring Mean: 4.8 µg/l
Minimum: <1 µg/l

Maximum: 160.0 μg/l (Goshorn Lake, Allegan Co.)

APPENDIX 3 2010 COOPERATIVE LAKES MONITORING PROGRAM CHLOROPHYLL RESULTS

APPENDIX 3 2010 COOPERATIVE LAKES MONITORING PROGRAM CHLOROPHYLL RESULTS

		Site ID		Chlorophyll a (µg/L)	hyll a	(µg/L)				Std.	Carlson
Lake	County	Number	May	June	July	Aug	Sept	Mean	Median	Dev.	TSI _{CHL}
Bostwick	Kent	410322	2.0	4.5	5.1	6.0	6.0	4.7	5.1	1.6	47
Brooks	Leelanau	450222	10.0	16.0	18b	11.0	9.8	13.0	11.0	ယ ထ	54
Vol/Rep				15.0							
Cedar	Alcona/losco	010017	2.6	1.0<	5.3	3.4	4	3. <u>1</u>	3.6	. <u>1</u> 80.	43
Cedar	Van Buren	800241	1.0<	6.5	3.4	3.8	4.3	3.7	<u>ယ</u> ထ	2.2	44
Chain	losco	350146	1.7	4.9	5.1	3.7	3.4	သ .ထ	3.7	<u>-</u> 2	43
Chemung	Livingston	470597	1.0<,b	5.8b	5.3b	C	9.1	5.2	5 <u>.</u> 6	დ ე	47
Clam	Antrim	050101	1.0<	1.0<	1.7	2.0	1.6	<u>.1</u> .3	1.6	0.7	3 <u>5</u>
Clark	Jackson	380173	1.0	1.7	3.3 3	2.7	3.1	2.4	2.7	1.0	40
Vol/Rep					3.6						
Cobb	Barry	080259	1.0<	1.0<	2.3	2.6	7.0	2.6	2.3	2.7	39
Corey	St. Joseph	750142	<u>-</u> 4	3.2	2.2	3. 3	<u>1</u> .သ	2.3	2.2	1.0	38 8
Cranberry	Oakland	631196	1.8	2.0	*	2.1	7.8	3.4	2.1	2.9	38
Crooked	Kalamazoo	390599	1.5	1.7	4.8	12.0	3.9	4.8	3.9	4.3	44
Crooked, Big (E. Basin)	Van Buren	800483	4.0	3.8	2.9	3.2	2.8	ယ ယ	3.2	0.5	42
MDNRE							2.6				
MDNRE/Rep							2.6				
Crooked, Little	Van Buren	800535	ယ ယ	4.9	2.9	3.0	3.5 5	3.5	ဒ္	0.8	42
MDNRE							ა .ნ				
MDNRE/Rep							3.6				
Crooked, Upper	Barry	080071	ယ ယ	6.3	4.0	4.8	3.3b	43	4 0	1.3	44
Crystal	Oceana	640062	3.0	18.0	4.6	4.8	12.0	8.5	4.8	6.4	46
Crystal	Benzie	100066	*	*	*	*	*				
Deer	Alger	020127	2.6b	1.5	2.6	3.9	3.7	2.9	2.6	1.0	40
Deer	Oakland	631128	1.0<	1.0<	1.0<	1.4	1.8b	0.9	0.5	0.6	<u>۵</u>
Devils	Lenawee	460179	1.0<	4.7	3.5	1.0<	3.9	2.6	3.5	2.0	43
Diane	Hillsdale	300173	23.0	17b	36.0	26.0	23.0	25.0	23.0	7.0	61

APPENDIX 3 2010 COOPERATIVE LAKES MONITORING PROGRAM CHLOROPHYLL RESULTS

);		01-1-1-1-1		2	,	1		Std	Carlson
	County	Number	Mav	Alne July Annt	July	Pug (Fg/r)	Sept	Mean	Median	Dev.	TSI _{CHL}
Lave	Coss	140039	1 0×	1	5.6	ဂ	1.0<		0.8	2.5	<u> </u>
Vol/Box							2.3			,	
Duncan	Barry	080096	2.8	1.5	31.0	23.0	27.0b	17.1	23.0	13.9	61
Vol/Rep						ი ა					
Eagle	Cass	140057	1.0<	ယ ယ	6.3	6.4	9.0	5.1	6.3	.ယ ယ	49
Eagle	Kalkaska	400130	1.2	1.6	1.0<	4.0	1.0<	1.6	1.2	1.4	32
Eagle	Allegan	030259	1.2	-1	3 3	12.0	4.5	4.4	3.3	4.5	42
Earl	Livingston	470554	9.5	10.0	5,6	3.0	16.0	8.8	9,5	4.9	53
Emerald (Button)	Kent	410709	1.5	3.2	7.3	13.0	6.5	6.3	6.5	4.4	49
Evans	Lenawee	460309	1.0<	2.3	ω .1	ა ა	ယ ယ	2.5	ω	1.2	; 4 2
Fair	Barry	080260	1.6	4.1b	3.1	6.8	2.3	3.6	<u>မ</u> . <u>1</u>	2.0	42
Fisher (Big Fisher)	Leelanau	450224	1.0<	1.0<	1.0<	1.0<	1.0<	0.5	0.5	0.0	4 44
Five Lakes (Lake #2)	Otsego	690157	4.8	2.0	2.4	1.0<	1.0<	2.0	2.0	1.8	3/
Five Lakes (Lake #3)	Otsego	690152	1.0<	1.5	1.0	1.0<	-	0.9	0.8	0.5	} <u>&</u>
Fremont	Newaygo	620029	1.4	4.5	- <u>-</u> 2	4.2	2.0	2.8	2.0	1.5	3/
MDNRE				ე ა							
MDNRE/Rep		·		5.6				,)	•)	•
Freska	Kent	410702	4.1	4.0	9.8	3.0	3.4	4.9	4.0	ν.α	#
Vol/Rep			3.5)))	5
George	Clare	180056	2.2	2.8	ა 5	4.7	3.3	ယ	ယ	0.9	42
Glen (Big Glen)	Leelanau	450049	<u></u>	*	1.0<	1.0^	1.0	0.8	0.8	0.4	۵,
Glen Little	Leelanau	450050	1.0<	*	1.3	1.7	1.3	1.2	<u>1</u> .3	0.5	ယ
Goshorn	Allegan	030650	25.0	15.0	28.0	60.0	160.0	57.6	28.0	59.7	63
Gourdneck	Kalamazoo	390541	1.0	1.4	5.9	5.7	7.4	4.3	5.7	2.9	3 48
Gull	Kalamazoo	390210	1:0<	1.0<	1.6	2.9	3.0	1.7	1.6	1.2	<u>ئ</u> ي ر
Hamlin, Lower	Mason	530073	2.7	1.7	2.0	2.6	1.0	2.0	2.0	0.7	37
Hamlin, Upper	Mason	530074	1.7	3.2	4.8	18.0	2	6.0	3.2	ō.0	7

APPENDIX 3 2010 COOPERATIVE LAKES MONITORING PROGRAM CHLOROPHYLL RESULTS

		5 4:0		7127	F./-	`				2	Oprinon
Lake	County	Number	May	June July Aug	July	Bug)	Sept	Mean	Median	Dev.	TSI _{CHL}
Hess	Newaygo	620032	9.9	14.0	4.9	4.7	6.1	7.9	6.1	4.0	48
Hicks	Osceola	670062	7.0	21.0	17.0	16.0	*	15.3	16.5	5.9	58
Higgins (N. Basin)	Roscommon	720026	*	1.0<	1.0<	1.0<	1.0<	0.5	0.5	0.0	<u> </u>
Higgins (S. Basin)	Roscommon	720028	*	1.0<	1.0<	1.0<	1.2	0.7	0.5	0.4	<u>ئ</u>
High	Kent	410703	4.7	3.4	5.3	7.4	5.7	5 <u>.</u> 3	5.3	1.5	47
Horsehead	Mecosta	540085	<u>-</u>	1.8	5.4	5.3	ယ &	3.5	ა ა	2.0	44
MDNRE							3.1				
MDNRE/Rep							3.4				
Hubbard	Alcona	010106	1.0<	1.2	1.0<	. 1.8	1.6	1	1.6	0.6	32
Indian	Kalamazoo	390305	1.0<	*	3.6	2.3	<u>.5</u>	2.0	1.9	1.3	37
Indian	Kalkaska	400015	*	2.9	2.6	2.5	2.4	2.6	2.6	0.2	40
Indian	Osceola	670227	2.2	1.9	<u>ω</u>	4.7	4.1	3.2	3.1	1.2	42
Island	Grand Traverse	280164	1.0<	1.2	2.6	2.1	2.3	1.7	2.1	0.9	38
Klinger	St. Joseph	750136	1.2	1.0<	3.6	2.9	2.0	2.0	2.0	1 .3	37
Lakeville	Oakland	630670	1.7	1.0<	2.5	3.5	6.0b	2.8	2.5	2.1	40
Lancelot	Gladwin	260104	2.1	5.3	2.2	7.8	11.0	5.7	5.3	3.8	47
Vol/Rep					1.6						
Lancer	Gladwin	260116	1.0<	1.3	3.1	3.4	1. 3	1.9	<u>1</u> ယ	1.3	33
Lansing	Ingham	330137	3.6	1.3	5.0	5.8	ω .1	3.8	3.6	1.7	43
Little Long	Barry/Kalamazoo	080279	1.0<	2.2	2.46	2.7	3.7b	2.3	2.4	1.2	39
Long	losco	350076	1.0<	1.0<	3 1	2.3	2.6	1.8	2.3	1.2	39
Magician	Cass	140065	7.1	1.0<	1.0<	4.1	2.3	2.9	2.3	2.8	39
Margrethe	Crawford	200157	1.0<	1.0<	2.9	2.9	2.9	1.9	2.9	<u>۱</u> ن	41
Mary	íron	360071	1.0	1.8	1.6	4.4	4.7	2.7	1.8	1.7	36
Vol/Rep						4.8					
Maynard	Alcona	010126	4.3	8.5b	13.0	16.0	9.9	10.3	9.9	4.4	53
Mecosta	Mecosta	540057	1.0<	1.0<	2.9	3.6	ა .8	2.3	2.9	1.6	41

APPENDIX 3 2010 COOPERATIVE LAKES MONITORING PROGRAM CHLOROPHYLL RESULTS

					111.1	`				Std	Carlsor
		Site ID		Chiorophyli a	Jinyii a	(hg/L)	Sent	Mean	Mean Median	Dev.	TSI _{CHL}
Lake	County	Manipel	may	Quito			*				
Mirror	Jackson	380478	*	*	*	*	*	•) I		3
Moon	Gogebic	270120	1.4	2.2	2.7	ω ω	7.1	<u>ယ</u> ယ	2./	2.2	40
Mild	Jackson	380469	a,c	1.6a	2.6a	5.4	*				3
Mirray	Kent	410268	1 N	1.2	4.9	2.3b	4.3	2.8	2.3		 B.
Nepessing	Lapeer	440220	1.7	3.4	3.7	11.0	6.9	5.3	3.7		43
Okanoka	Wayne	821554	1.0<	1.7b	*	5.3b	8.1	3.9	ن ن ک		243
Orion	Oakland	630554	1.0<	1,5	3.5	12	1.3	1.6	<u>.</u> ယ		S.
Vol/Rep						1.0<			, I		5
Osterhout	Allegan	030263	2.7	5.6	5.1	<u>အ</u>	2.2	ن د د	ა.		1 2
Oxbow	Oakland	630666	*	*	*	*) }		<u>.</u>		n n
Parke	Oakland	631119	1.0<	1.0<	<u>1</u> .5	3.8	رى ئن) .		n (
Pentwater	Oceana	640313	9.4	8.6	25.0	26.0	36.0	21.0	25.0		3 6
Perch	Iron	360046	1.2	2.9	3.1	9.0	6.5b	4.5	ω -		4
Pleasant	Wexford	830183	*	*	3.5 5	4.2	4.3		ı Ł		5
Pretty	Mecosta	540079	<u>.</u> .	1.5	2.9	2.5	3.4	2.3	2.5		1 2
Randall	Branch	120078	*	7.6	6.9	14.0	12.0	10.1	9.8		, g
Round	Clinton	190146	2.9	11.0	6.0	4.7	9.2	6.8	6.0		: 4:
Round	Lenawee	460304	1.0<	1.0<	2.7	2.8b	2.6	1.8	2.6		<u> </u>
Round	Livingston	470546	4.3	5.9	11.0	12.0	11.0	8.8	11.0	ა.:	Q
Vol/Rep				7.1			l •		<u>.</u>		A F
Round	Mecosta	540073	2.2	5.0	4.4	ω .5	· /:	4.6	4. 4 .		Ę
School Section	Mecosta	540080	۵	۵	۵	*	*))		<u> </u>
Sherman	Kalamazoo	390382	2.4	3.9	3.4	7.4		4.0	, u		<u> </u>
Shingle	Clare	180108	4.7	6.4	5.8		3.2	; 4. Y.	1.		ú j
Stony	Oceana	640049	4.5	8.1	13.0		17.0	- I	. 0		<u>,</u> (
Strawberry	Livingston	470213	1.7	1.4	4.5	12.0	5.2	. b.O	4 4 U C		<u>ئ</u> ئ
Sweezey	Jackson	380470	1.0<	1.0<	1.0	1.8	I.C	1.0	-		

APPENDIX 3 2010 COOPERATIVE LAKES MONITORING PROGRAM CHLOROPHYLL RESULTS

		Site ID		Chlorophyll a (µg/L)	hyll a	(Lg/L)				Std.	Carlson
Tako	County	Number	мау	June	July	Aug	Sept	Mean	Median	Dev.	TSI _{CHL}
Templene	St. Joseph	750322	1.0<	1.0<	1.4	1.3	1.0<	0.8	0.5	0.5	~ 31
Vol/Ren			1.0<								l l
Thomannie R -Cascade Imp.	Kent	410686	4.9a	7.3a	18.0a	44.0a	14.0a	17.6	14.0	15.6	5/
Torch (N. Basin)	Antrim	050055	*	*	1.0<	*	*				
Tarah (C. Basin)	Antrim	050240	1.0×	1.0<	1.0<	1.0<	1.0<	0.5	0.5	0.0	<u>۵</u>
Total (S. Basili)	- wingston	470591	10^	ပ်ာ	2.6	27.0	3.7	7.8	3.7	10.9	43
Traingle Twin North Twin)	Kalkaska	400012	1.0<	1.0<	1.5	1.7	2.1	1.3	1.5	0.7	35
Twin (Fig. 1 win South Twin)		400013	C	*	1.0	1.6	1.0<,b				
Twin East	Montmorency	600013	9.6	5.1	-	3.9	5,5	6.0	5.3	2.5	47
Twin Wood	Montmorency	600072	2.6	2.5	3.9	2.6	ა ა	3.0	2.6	0.6	40
Van Etten	losco	350201	2.6	1.8	3.8	11.0	2.3	4.3	2.6	3.8	40
Viking	Otsego	690136	11.0	7.2	*	9.8	-				
Viscosia	Jackson	380263	1.0<	1.7	3.6	2,3	1.9	2.0	1.9	1.1	37
Windows	Clare	180069	1.0<	4.6b	7.7	4.0	1.9	3.7	4.0	2.8	4
Wildwood	Cheboygan	160230	2.3	1.7	1.0	4.7b	4.9	2.9	2.3	1.8	39
Vol/Den	Č						3.0				
Woods	Kalamazoo	390542	1.0<	1.0<	2.9	18.0	11.0b	6.6	2.9	7.7	41
MDNRE						, o					
MDNRE/Rep						7/					

APPENDIX 3 2010 COOPERATIVE LAKES MONITORING PROGRAM CHLOROPHYLL RESULTS

	l ake	
	County	
	Number	Site ID
	May	
	June	Chloroph
I	July	phyll a
	Aug	(L)/gu
	Sept	
	Mean	
	Median	
	Dev.	Std.
	TSI _{CHL}	Carlson

Results Codes:

- Sample value is less than limit of quantification (1 ug/l)
- No sample received
- No data sheet submitted with sample
- Sample not collected within the designated sampling window
- Sample not collected at proper time sample not processed
- Sample poorly or not covered by aluminum foil sample not processed
- Dates on field sheet and vial labels do not match
- Separator sheets used instead of filter sample not processed
- No MgCO3 used to preserve the sample
- No filter; received vial filled with water

Appendix 4 2010 Cooperative Lakes Monitoring Program Dissolved Oxygen and Temperature Results

Map above shows the distribution of the 44 lakes enrolled in Dissolved Oxygen and Temperature monitoring in the 2010 CLMP Program.

APPENDIX 4 2010 COOPERATIVE LAKES MONITORING PROGRAM DISSOLVED OXYGEN AND TEMPERATURE RESULTS

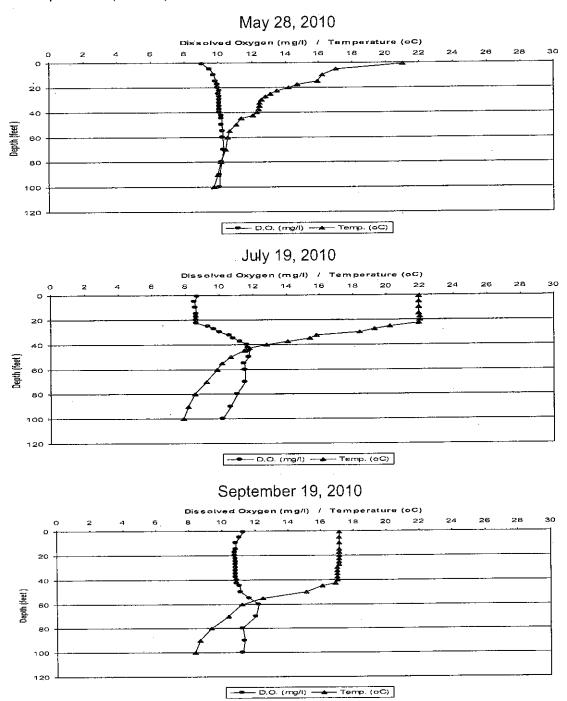
County	Participating Lakes
Alcona	Badger Lake Bear Lake Hubbard Lake Maynard Lake
Allegan	Eagle Lake
Alpena	Beaver Lake
Barry	Cobb Lake Duncan Lake Little Long Lake
Cass	Birch Lake Eagle Lake Magician Lake
Cheboygan	Wildwood Lake
Clare	Windover Lake
Grand Traverse	Arbutus Lake
Jackson	Mirror Lake Mud Lake Sweezey Lake
Kalamazoo	Crooked Lake Gull Lake Indian Lake Sherman Lake
Kalkaska	Bear Lake
Kent	Bostwick Lake Freska Lake Murray Lake
Lenawee	Devils Lake Round Lake
Livingston	Earl Lake Strawberry Lake Triangle Lake

County	Participating Lakes
Mason	Lower Hamlin Lake Upper Hamlin Lake
Newaygo	Fremont Lake Hess Lake
Oakland	Cranberry Lake Deer Lake Oxbow Lake Parke Lake
Oceana	Pentwater Lake
Osceola	Big Lake Hicks Lake
Roscommon	Higgins Lake (North basin) Higgins Lake (South basin)
St. Joseph	Corey Lake

On the following pages five representative dissolved oxygen/temperature patterns are illustrated.

The first is of a very high quality oligotrophic lake, which has a very large hypolimnion volume. The lake maintains high oxygen levels in the hypolimnion all summer.

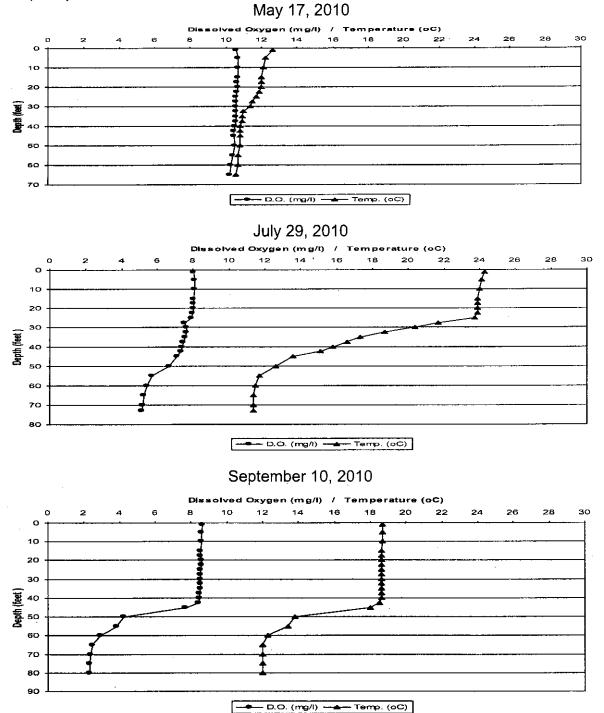
The second pattern represents a high quality oligotrophic lake with a moderate hypolimnion volume. The lake retains some oxygen in the hypolimnion through the entire summer. By late summer, the dissolved oxygen levels drop, but the hypolimnion never becomes devoid of oxygen.


The third pattern is of a good quality mesotrophic lake with a moderate hypolimnion volume. This lake keeps some dissolved oxygen in the hypolimnion into midsummer, but by late summer the entire hypolimnion is devoid of oxygen.

The fourth pattern is a meso/eutrophic lake with a moderate size hypolimnion. Within a few weeks of spring overturn the hypolimnion has lost all oxygen. This anaerobic condition persists all summer.

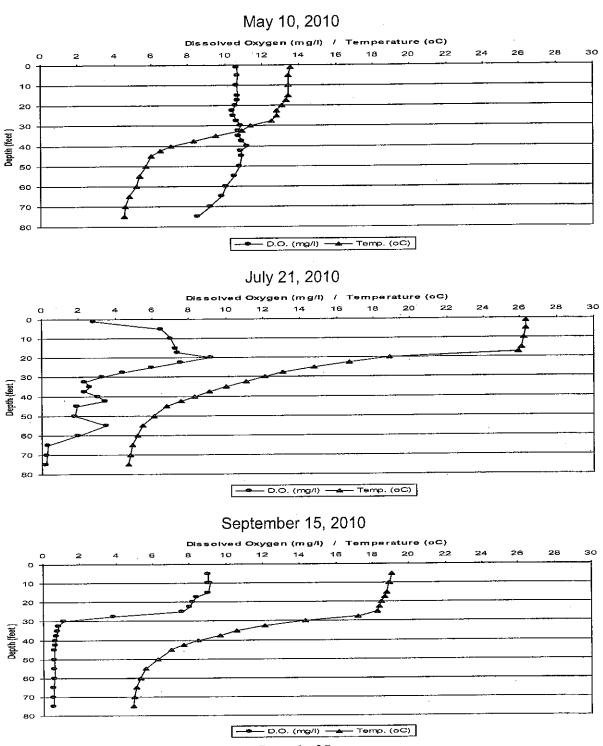
The final pattern is an mesotrophic lake, which is too shallow to maintain stratification. It could lose oxygen in the deeper water, but summer storms cause mixing through the deepest parts of the lake renewing the oxygen supply to these waters.

Oligotrophic Lake with a Very Large Volume Hypolimnion


Higgins Lake in Roscommon County is an oligotrophic lake with a large volume hypolimnion. As an oligotrophic lake, it produces less organic material that must be decomposed (as compared to a mesotrophic or eutrophic lake). Its large volume hypolimnion has a substantial oxygen supply that is not reduced significantly by the decomposition of the limited organic material, which falls into the hypolimnion during the summer. Consequently, dissolved oxygen levels remain high in the hypolimnion all summer long. In fact, dissolved oxygen levels are actually higher in the upper hypolimnion than at the water surface. The colder hypolimnion water is able to hold more oxygen than the warmer epilimnion (surface) waters.

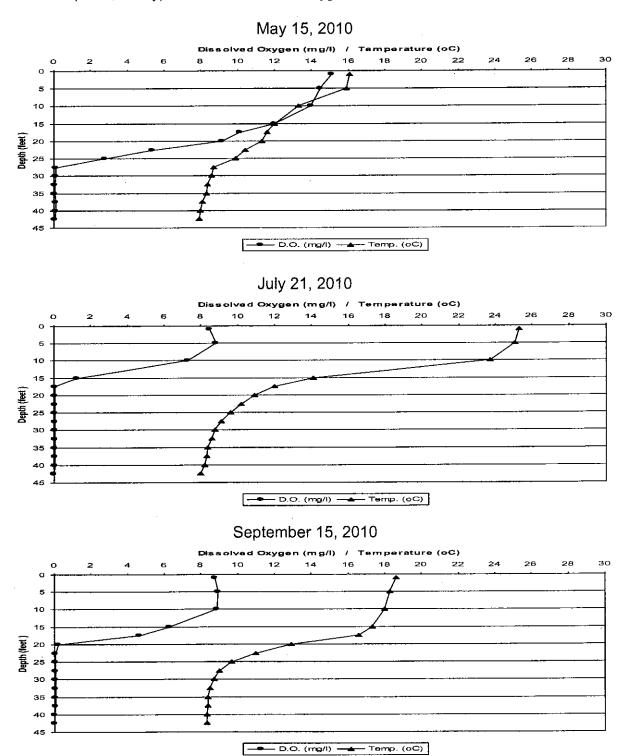
Page 3 of 7

Oligotrophic Lake with a Moderate Volume Hypolimnion


Hubbard Lake in Alcona County is an oligotrophic lake with a moderate hypolimnion. As an oligotrophic lake, it produces less organic material that must be decomposed (as compared to a mesotrophic or eutrophic lake). Its hypolimnion has a substantial oxygen supply that is not reduced significantly by the decomposition of the limited organic material, which falls into the hypolimnion during the summer. Consequently, dissolved oxygen levels remain high in the hypolimnion most of the summer. By late summer (September) there is enough organic matter decomposing to reduce oxygen in the hypolimnion, but the hypolimnion is never completely anaerobic.

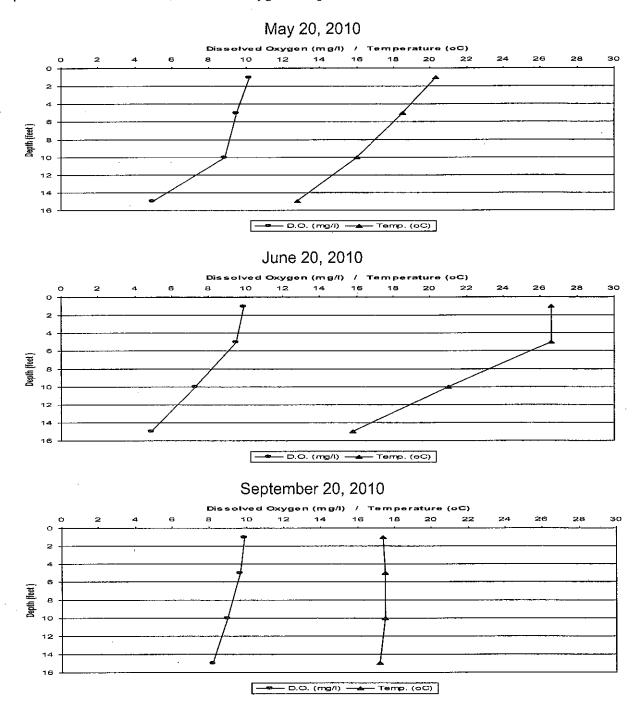
Page 4 of 7

Mesotrophic Lake with a Moderate Volume Hypolimnion


Corey Lake in St. Joseph County is a mesotrophic lake with a moderate volume hypolimnion. As a mesotrophic lake, it produces moderate amounts of organic material that must be decomposed. Its hypolimnion has a moderate oxygen supply that is gradually depleted by the decomposition of the organic material, which falls into the hypolimnion during the summer. Dissolved oxygen levels remain in the hypolimnion into mid-summer, but by August oxygen is gone in the deepest waters, and by late-summer (September) the entire hypolimnion is without oxygen.

Page 5 of 7

Mesotrophic/Eutrophic Lake with a Moderate Volume Hypolimnion


Badger Lake in Alcona County is a borderline mesotrophic/eutrophic lake with a moderate volume hypolimnion. As a productive lake it produces abundant amounts of organic material that must be decomposed. Its hypolimnion has a moderate oxygen supply that is rapidly depleted by the decomposition of the organic material, which falls into the hypolimnion during the summer. Dissolved oxygen levels in the hypolimnion drop to near zero within a few weeks of spring overturn. With no oxygen re-supply from the upper waters and atmosphere, the hypolimnion is devoid of oxygen all summer.

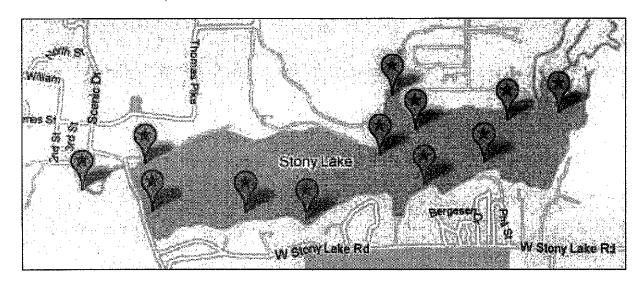
Page 6 of 7

Shallow Mesotrophic Lake that does not maintain Summer Stratification

Cranberry Lake in Oakland County is a shallow mesotrophic lake basin with insufficient depth to maintain stratification all summer. As a mesotrophic lake it produces moderate amounts of organic material that must be decomposed. Its hypolimnion, if present, has a small oxygen supply that is depleted by the decomposition of the organic material, which falls into the deeper parts of the lake during the summer. It is possible that dissolved oxygen levels in the deeper water can drop to zero by midsummer. However, because the lake is shallow, summer storms can drive wave energy into the deepest parts of the lake, breaking up any stratification present and re-supplying the deep water with oxygen. In the calm periods between storms, dissolved oxygen is again lost.

Page 7 of 7

Appendix 5 2010 Cooperative Lakes Monitoring Program Exotic Aquatic Plant Watch – Pilot Program



Map above shows the distribution of the 20 lakes enrolled in Exotic Aquatic Plant Watch pilot program in the 2010 CLMP Program.

APPENDIX 5 2010 COOPERATIVE LAKES MONITORING PROGRAM EXOTIC AQUATIC PLANT WATCH RESULTS

County	Participating Lakes	
Barry/Kalamazoo	Little Long Lake	
Cass	Eagle Lake	
Jackson	Sweezey Lake	
Leelanau	Brooks Lake Fisher Lake Glen Lake Little Glen Lake	
Oceana	Stony Lake	

Twenty lakes enrolled in the 2010 CLMP Exotic Aquatic Plant Watch, a pilot program for the CLMP. Of those enrolled, eight lakes submitted a report of their results. As an example of the data collected in the Exotic Aquatic Plant Watch project, the data for Stony Lake, Oceana County, are presented below. CLMP volunteers on Stony Lake took note of the locations of any of the three species included in the Exotic Watch – Eurasian milfoil, curly-leaf pondweed, and Hydrilla – and also took note of other species of interest. They also created a Google Earth map of the locations of these species for easy reference.

Map of Stony Lake (Oceana County) Exotic Aquatic Plant Watch sites, created using Google Maps.

APPENDIX 5 2010 COOPERATIVE LAKES MONITORING PROGRAM EXOTIC AQUATIC PLANT WATCH RESULTS

Stony Lake Exotic Plant Watch 2010

Exotic Plants found in Stony Lake, Oceana County, Benona & Claybanks Townships, Michigan (Field ID# 640049)

NOTE: Herbicide spraying at selected sites June 21 and August 19. Harvesting at selected sites July 10-11. Standard Aquatic Vegetation Survey conducted by Progressive AE on July 20.

- CLPW = Curly Leaf Pondweed
- EWMF = Eurasian Watermilfoil
- DNRE Aquatic Vegetation Survey terminology: Found = one or two plants; Sparse = scattered distribution; Common = easily found; Dense = 60%-70% of plant mass.

East End Marsh

- 43.33761 / 86.28069
- June 7 CLPW dense; June 30, brown and dying; July 28 gone. August 3-4 coming back--common.
 Bootleggers Cottage
 - 43.56230 / 86.47173
 - August 3-4 EWMF in two spots, sparse, scattered among dense water stargrass and wild celery. September 28 found.

Stony Acres Point

- 43.56190 / 86.47730
- June 7 EWMF common; July 1 mostly dying; July 28 return sparse among stargrass, elodea, wild celery.
 September 28 EWMF common in small patch east of dock.

Green Point Bayou

- 43.56321 / 86.47826
- June 27 CLPW common throughout bay, gone by mid-July. EWMF found. September 28 EWMF sparse among diverse mix of native milfoil, elodea, coontail and water crowfoot (buttercup).

Green Point

- 43.56059 / 86.47951
- July 6 CLPW sparse

Public Swimming Dock

- 43.55950 / 86.49637 (east side) 43.55910 / 86.49641 (west side)
- July 7 EWMF dense on west side, sparse on east. Harvested on July 10-11 without first knocking back with herbicide. Also sparse CLPW on both. October 11 EWMF dense around SW corner of dock; CLPW found.

West End

- From Robinwood 43.55893 / 86.49658 to just north of public fishing dock: 43.55803 / 86.49623
- July 7 EWMF sparse all along shore; CLPW found; August 13 EWMF sparse.

Yurt Cottage to Chandler Cottages

- 43.55691 / 86.49144 to 43.55710 / 86.48559
- August 13 EWMF found, scattered through stargrass and pondweed.

Larmore Bay

- 43.55662 / 86.48473
- July 14 EWMF found; August 13 gone.

Lutheran Camp

- 43.55850 / 86.47612
- September 9 EWMF found.

SE shore

- From the Lutheran Beach to the SE corner, 43.55891 / 86.47077 (boat launch).
- September 9 EWMF sparse. September 28 EWMF sparse among dense native milfoil, others.
 Stony Creek Dam
 - 43.55934 / 86.49841
 - August 6 EWMF just upstream of dam at shoreline.